Single mode resource levelling problem

  • Results for minimizing the sum of squares and for minimizing the absolute deviations of the resource requirements are generated using a branch-and-cut framework (cf. Rieck, J.; Zimmermann, J.; Gather, T.: Mixed-integer linear programming for resource leveling problems. European Journal of Operational Research, 221:27-37, 2012).
  • Results for minimizing the total adjustment costs are generated using a branch-and-cut framework (cf. Kreter, S.; Rieck, J.; Zimmermann, J.: The total adjustment cost problem: Applications, models, and solution algorithms. Journal of Scheduling, 17:145-160, 2014).

Testset 1

Testset 1 is introduced in:

  • Weglarz, J. (ed.): Project Scheduling - Recent Models, Algorithms and Applications. Kluwer, Bosten, 1999, p.197-212.
  • Results are based on the assumption that ck=1 for all k ∈ R (cf. Ballestin, F.; Schwindt, C.; Zimmermann, J.; Ressource Leveling in Make-to-Order Production: Modeling and Heuristic Solution Method. International Journal of Operations Research 4, 1-13, 2007).
  • Results for general costs ck are reported on http://www.wiwi.tu-clausthal.de/abteilungen/produktion/forschung/schwerpunkte/project-generator/

testset RLPj_10

testset RLPj_20

testset RLPj_30

Testset 2

Testset 2 is introduced in:

  • Rieck, J.; Zimmermann, J.; Gather, T.: Mixed-integer linear programming for resource leveling problems. European Journal of Operational Research, 221:27-37, 2012.
  • Instances 1-20 of each testset have a restrictivness of Thesen (RT) of 0.3. In Kreter et al. 2014 (Kreter, S.; Rieck, J.; Zimmermann, J.: The total adjustment cost problem: Applications, models, and solution algorithms. Journal of Scheduling, 17:145-160, 2014) these instances form testset |Vr|-|R|-0.3. Instances 21-40 form testset |Vr|-|R|-0.6 with RT=0.6.

testset rlp_10_1

testset rlp_10_3

testset rlp_10_5

testset rlp_15_1

testset rlp_15_3

testset rlp_15_5

testset rlp_20_1

testset rlp_20_3

testset rlp_20_5

testset rlp_30_1

testset rlp_30_3

testset rlp_30_5

testset rlp_50_1

testset rlp_50_3

testset rlp_50_5

Testset 3

Testset 3 is introduced in:

  • Kreter, S.; Rieck, J.; Zimmermann, J.: The total adjustment cost problem: Applications, models, and solution algorithms. Journal of Scheduling, 17:145-160, 2014.

testset 15-3-0.1

testset 15-3-0.2

testset 20-3-0.1

testset 20-3-0.2

 

Kontakt  Sitemap  Impressum
© TU Clausthal 2017