IEEE IEEM VIRTUAL 2021

13 - 16 December 2021

2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)

www.ieem.org

Organizers:

13 - 16 December 2021 www.ieem.org

Control of Shared Production Buffers: A Reinforcement Learning Approach

Nora Krippendorff, <u>Christoph Schwindt</u> Clausthal University of Technology

13 - 16 December 2021 www.ieem.org

Problem statement: flow line and shared buffer

- Asynchronous flow line for mixed-model production
- Machines $m = m_1, ..., m_M \in \mathcal{M}$ decoupled by buffer slots
- Machine blocked if no slot available for processed item
- Assume one shared central buffer with slots $k \in \mathcal{K}$
- Transfer actions $a \in \mathcal{A}$ among machines and slots
 - supply released part to machine m_1 or slot k
 - pass part from machine m to machine m' or slot k
 - retrieve part from slot k for machine m or slot k'
 - transfer finished part from machine m_M to stock
- Actions *a* incur transfer costs c(a), finished parts yield contribution margins v(a), payments r(a) = v(a) - c(a)
 - Organizers: **IEEE E** IEEE Singapore Section IEEE TEMS Singapore Chapter IEEE TEMS Hong Kong Chapter

• Model complex configurations using prohibitive costs *c*(*a*)

13 - 16 December 2021 www.ieem.org

Problem statement: stochastic process and objective

- Parts released to line form renewal process with rate λ
- Processing times on machines *m* independent random variables S_m with $\mathbb{E}(S_m) = \mu_m^{-1}$
- Transportation times supposed to be negligible
- System status *i* encoded as tuple $i = ((i_k)_{k \in \mathcal{K}}, (i_m)_{m \in \mathcal{M}})$ with $i_k \in \{0\} \cup \mathcal{M}$ and $i_m \in \{0, 1, 2\}$
- Status *i* left upon release or completion event $e \in \mathcal{E} = \{e_0, e_1, e_2, \dots, e_M\}$
- Deterministic event-driven buffer control policy π selects $a \in A$ at occurrence of $e \in \mathcal{E}$
- Stochastic evolution of system $(t^n, i^n, e^n, a^n)_{n \in \mathbb{N}_0}$ represents random sample path induced by policy π with $i^{n+1} = \sigma(i^n, e^n, a^n)$ and $a^n = \pi(t^0, i^0, e^0, a^0, ..., t^n, i^n, e^n)$
- Buffer control problem: determine policy π maximizing $npv(a) = \mathbb{E}(\sum_{n=0}^{\infty} r(a^n) \cdot e^{-\alpha t^{n+1}})$ with discounting rate $\alpha > 0$

13 - 16 December 2021 www.ieem.org

Continuous-time Markov decision problem

- Assume exponentially distributed interrelease and processing times of parts
- Proposition: Buffer control problem can be interpreted as infinite-horizon finite-space discounted continuous-time Markov decision problem $(S, A, q, r, P^0, \alpha)$ with
 - state space S with states s = (i, e), event $e \in \mathcal{E}(i)$ terminating stay in system status i
 - action space $\mathcal A$ of transfer actions a
 - transition rates $q_{ss'}^a$ from states s to states s' when a is selected upon entering s

•
$$q_{e_0} = \lambda$$
, $q_{e_m} = \mu_m$, $q_s = q_{i,e} = \sum_{f \in \mathcal{E}(i)} q_f$, $q_{ss'}^a = q_s \cdot \frac{q_{e'}}{q_{s'}}$ with $s' = (i', e')$, $i' = \sigma(i, e, a)$

- rewards r(s, a, s') = r(a) received upon entering s' when a has been taken in s
- initial probability distribution P^0 over S with $P^0(s) = 1$ if $s = (0, e_0)$ and $P^0(s) = 0$, else
- continuous-time discounting rate α
- Theorem (Puterman 1994): $(S, \mathcal{A}, q, r, P^0, \alpha)$ admits an optimal stationary policy $\pi: S \to \mathcal{A}$

13 - 16 December 2021 www.ieem.org

Discrete-time Markov decision problem

- Theorem (McMahon 2008): Continuous-time Markov decision problem $(S, A, q, r, P^0, \alpha)$ can be transformed into discrete-time Markov decision problem $(S, A, p, \bar{r}, P^0, \bar{\gamma})$
 - Scale transition rates $q_{ss'}^a$ by factor $1/\nu$ with $\nu = \lambda + \sum_{m \in \mathcal{M}} \mu_m \rightarrow \text{rates } \bar{q}_s = \frac{q_s}{\nu} \leq 1$
 - Set one-step transition probabilities $p_{ss'}^a = \bar{q}_{ss'}^a$ from s to s' = (i', e') with $i' = \sigma(s, a)$
 - Put self-loop probability $p^a_{ss} = 1 \sum_{s' \neq s} p^a_{ss'} = 1 \bar{q}_s \ge 0$
 - Scale rewards r(a) by factor $\frac{q_s+\alpha}{\nu+\alpha} \rightarrow$ rewards $\bar{r}(s,a)$
 - Replace discount factor $\gamma = e^{-\alpha}$ by discount factor $\bar{\gamma} = \frac{\nu}{\nu + \alpha}$
- Discrete-time Markov decision problem amenable to traditional reinforcement learning

13 - 16 December 2021 www.ieem.org

Q-learning for optimal buffer control

- Simulation-based learning method for problems of type $(S, A, p, \bar{r}, P^0, \bar{\gamma})$
- Learn state-action value function $Q(s,a) = \bar{r}(s,a) + \bar{\gamma} \sum_{s' \in S} p^a_{ss'} \cdot \max_{a' \in \mathcal{A}(s')} Q(s',a')$
- Q-learning iteratively approaches Q-values by estimators $\hat{Q}(s, a)$
 - 1. initialize: put $\hat{Q}(s, a) \coloneqq 0$ for $s \in S, a \in \mathcal{A}(s)$ and $s \coloneqq s^0$
 - 2. select action $a \in \mathcal{A}(s)$ based on probabilities $\mathbb{P}(a \mid s)$ depending on values $\hat{Q}(s, a)$
 - 3. randomly draw next state s' with one-step probabilities $p_{ss'}^a$
 - 4. update $\hat{Q}(s,a) \coloneqq (1-\eta) \cdot \hat{Q}(s,a) + \eta \cdot \left(\bar{r}(s,a) + \bar{\gamma} \cdot \max_{a' \in \mathcal{A}(s')} \hat{Q}(s',a')\right)$ with dynamic learning rates $\eta = \eta(s,a)$, put $s \coloneqq s'$, and return to step 2
- Determine policy π : for $s \in S$ choose $\pi(s) \in \arg \max_{a \in \mathcal{A}(s)} \hat{Q}(s, a)$, put $npv \coloneqq \hat{Q}(s^0, \pi(s^0))$

13 - 16 December 2021 www.ieem.org

Experimental validation: problem instance

- Toy instance with two machines and two buffer slots
- Action space \mathcal{A} : 6 atomic, 5 compound transfer actions a
- State space S: 25 states s, four of which require decision between two alternative actions
 - Upon completion of a part on m_1 , store the part in k_1 or in k_2 if m_2 is occupied and both slots are available?
 - Upon completion of a part on m_2 , retrieve a part from k_1 or from k_2 if both slots are occupied with parts for m_2 ?
- Optimal policy π^* : store parts for m_2 in dedicated slot k_1 whenever possible and retrieve parts for m_2 preferably from shared slot k_2

- Machine m_1 can access k_2 , parts for machine m_2 can be stored in k_1, k_2
- Transfer costs c(a) = 0
- Unit contribution margin v = 1
- Arrival and processing rates $\lambda = \mu_1 = \mu_2 = 1$
- Discount rate $\alpha = 0.\overline{03}$

13 - 16 December 2021 www.ieem.org

Experimental validation: results

- $\mathcal A$ and $\mathcal S$ rather small, toy instance challenging though
- No transfer cost: Q-learning only guided by the weak effects of storage and retrieval decisions on production rate, so high accuracy of estimators $\hat{Q}(s, a)$ needed
- In 20 replications of experiment, optimal policy found within 2,000,000 iterations
- Speed of convergence largely depends on parameters controlling learning rate η and probabilities $\mathbb{P}(a \mid s)$
- Exact values Q(s, a) obtained by solving Bellman's optimality equation with linear programming
- Mean relative error of estimators $\hat{Q}(s, a)$: 0.135 %

13 - 16 December 2021 www.ieem.org

Conclusions

- Buffer control for stochastic flow lines as continuous-time Markov decision problem
- Transformation to discrete-time Markov decision problem
- Q-learning reliably provides optimal stationary buffer control policy for small instance
- Research avenues:
 - More advanced methods: deep reinforcement learning representing function Q(s,a) as neural network, approximate dynamic programming, e. g., linear programming with approximate value functions
 - More general models: inventory holding cost via permanence rewards, more general production systems including convergent flows, semi-Markov production processes, or time durations following phase-type distributions

13 - 16 December 2021 www.ieem.org

Thank you for your attention

Nora Krippendorff Christoph Schwindt Operations Management Group Clausthal University of Technology operations@tu-clausthal.de www.wiwi.tu-clausthal.de/produktion

