

Control of Shared Production Buffers:
A Reinforcement Learning Approach

Nora Krippendorff, Christoph Schwindt

Clausthal University of Technology

• Asynchronous flow line for mixed-model production

• Machines 𝑚𝑚 = 𝑚𝑚1, … ,𝑚𝑚𝑀𝑀 ∈ ℳ decoupled by buffer slots

• Machine blocked if no slot available for processed item

• Assume one shared central buffer with slots 𝑘𝑘 ∈ 𝒦𝒦

• Transfer actions 𝑎𝑎 ∈ 𝒜𝒜 among machines and slots
• supply released part to machine 𝑚𝑚1 or slot 𝑘𝑘
• pass part from machine 𝑚𝑚 to machine 𝑚𝑚𝑚 or slot 𝑘𝑘
• retrieve part from slot 𝑘𝑘 for machine 𝑚𝑚 or slot 𝑘𝑘𝑘
• transfer finished part from machine 𝑚𝑚𝑀𝑀 to stock

• Actions 𝑎𝑎 incur transfer costs 𝑐𝑐(𝑎𝑎), finished parts yield
contribution margins 𝑣𝑣 𝑎𝑎 , payments 𝑟𝑟(𝑎𝑎) = 𝑣𝑣(𝑎𝑎) – 𝑐𝑐(𝑎𝑎)

Problem statement: flow line and shared buffer

3

• Model complex configurations
using prohibitive costs 𝑐𝑐(𝑎𝑎)

• Parts released to line form renewal process with rate 𝜆𝜆

• Processing times on machines 𝑚𝑚 independent random variables 𝑆𝑆𝑚𝑚 with 𝔼𝔼 𝑆𝑆𝑚𝑚 = 𝜇𝜇𝑚𝑚−1

• Transportation times supposed to be negligible

• System status 𝑖𝑖 encoded as tuple 𝑖𝑖 = (𝑖𝑖𝑘𝑘 𝑘𝑘∈𝒦𝒦 , 𝑖𝑖𝑚𝑚 𝑚𝑚∈ℳ) with 𝑖𝑖𝑘𝑘 ∈ {0} ∪ℳ and 𝑖𝑖𝑚𝑚 ∈ {0, 1, 2}

• Status 𝑖𝑖 left upon release or completion event 𝑒𝑒 ∈ ℰ = {𝑒𝑒0, 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑀𝑀}

• Deterministic event-driven buffer control policy 𝜋𝜋 selects 𝑎𝑎 ∈ 𝒜𝒜 at occurrence of 𝑒𝑒 ∈ ℰ

• Stochastic evolution of system 𝑡𝑡𝑛𝑛, 𝑖𝑖𝑛𝑛, 𝑒𝑒𝑛𝑛, 𝑎𝑎𝑛𝑛 𝑛𝑛∈ℕ0 represents random sample path
induced by policy 𝜋𝜋 with 𝑖𝑖𝑛𝑛+1 = 𝜎𝜎(𝑖𝑖𝑛𝑛, 𝑒𝑒𝑛𝑛, 𝑎𝑎𝑛𝑛) and 𝑎𝑎𝑛𝑛 = 𝜋𝜋(𝑡𝑡0, 𝑖𝑖0, 𝑒𝑒0, 𝑎𝑎0, ..., 𝑡𝑡𝑛𝑛, 𝑖𝑖𝑛𝑛, 𝑒𝑒𝑛𝑛)

• Buffer control problem: determine policy 𝜋𝜋 maximizing 𝑛𝑛𝑛𝑛𝑛𝑛 𝒂𝒂 = 𝔼𝔼 ∑𝑛𝑛=0∞ 𝑟𝑟 𝑎𝑎𝑛𝑛 ⋅ 𝑒𝑒−𝛼𝛼𝑡𝑡𝑛𝑛+1

with discounting rate 𝛼𝛼 > 0

Problem statement: stochastic process and objective

4

5

• Assume exponentially distributed interrelease and processing times of parts

• Proposition: Buffer control problem can be interpreted as infinite-horizon finite-space
discounted continuous-time Markov decision problem 𝒮𝒮,𝒜𝒜, 𝑞𝑞, 𝑟𝑟,𝑃𝑃0,𝛼𝛼 with

• state space 𝒮𝒮 with states 𝑠𝑠 = 𝑖𝑖, 𝑒𝑒 , event 𝑒𝑒 ∈ ℰ(𝑖𝑖) terminating stay in system status 𝑖𝑖
• action space 𝒜𝒜 of transfer actions 𝑎𝑎
• transition rates 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑎𝑎 from states 𝑠𝑠 to states 𝑠𝑠𝑠 when 𝑎𝑎 is selected upon entering 𝑠𝑠

• 𝑞𝑞𝑒𝑒0 = 𝜆𝜆, 𝑞𝑞𝑒𝑒𝑚𝑚 = 𝜇𝜇𝑚𝑚, 𝑞𝑞𝑠𝑠 = 𝑞𝑞𝑖𝑖,𝑒𝑒 = ∑𝑓𝑓∈ℰ(𝑖𝑖) 𝑞𝑞𝑓𝑓, 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑎𝑎 = 𝑞𝑞𝑠𝑠 ⋅
𝑞𝑞𝑒𝑒𝑒
𝑞𝑞𝑠𝑠𝑠

with 𝑠𝑠′ = (𝑖𝑖′, 𝑒𝑒′), 𝑖𝑖′ = 𝜎𝜎(𝑖𝑖, 𝑒𝑒, 𝑎𝑎)

• rewards 𝑟𝑟 𝑠𝑠, 𝑎𝑎, 𝑠𝑠𝑠 = 𝑟𝑟(𝑎𝑎) received upon entering 𝑠𝑠𝑠 when 𝑎𝑎 has been taken in 𝑠𝑠
• initial probability distribution 𝑃𝑃0 over 𝒮𝒮 with 𝑃𝑃0 𝑠𝑠 = 1 if 𝑠𝑠 = (0, 𝑒𝑒0) and 𝑃𝑃0(𝑠𝑠) = 0, else

• continuous-time discounting rate 𝛼𝛼

• Theorem (Puterman 1994): 𝒮𝒮,𝒜𝒜, 𝑞𝑞, 𝑟𝑟,𝑃𝑃0,𝛼𝛼 admits an optimal stationary policy 𝜋𝜋: 𝒮𝒮 → 𝒜𝒜

Continuous-time Markov decision problem

6

• Theorem (McMahon 2008): Continuous-time Markov decision problem 𝒮𝒮,𝒜𝒜, 𝑞𝑞, 𝑟𝑟,𝑃𝑃0,𝛼𝛼
can be transformed into discrete-time Markov decision problem 𝒮𝒮,𝒜𝒜, 𝑝𝑝, 𝑟̅𝑟,𝑃𝑃0, 𝛾̅𝛾

• Scale transition rates 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑎𝑎 by factor 1/𝜈𝜈 with 𝜈𝜈 = 𝜆𝜆 + ∑𝑚𝑚∈ℳ𝜇𝜇𝑚𝑚 → rates �𝑞𝑞𝑠𝑠 = 𝑞𝑞𝑠𝑠
𝜈𝜈
≤ 1

• Set one-step transition probabilities 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑎𝑎 = �𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑎𝑎 from 𝑠𝑠 to 𝑠𝑠′ = (𝑖𝑖′, 𝑒𝑒′) with 𝑖𝑖′ = 𝜎𝜎 𝑠𝑠, 𝑎𝑎

• Put self-loop probability 𝑝𝑝𝑠𝑠𝑠𝑠𝑎𝑎 = 1 − ∑𝑠𝑠′≠𝑠𝑠 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑎𝑎 = 1 − �𝑞𝑞𝑠𝑠 ≥ 0

• Scale rewards 𝑟𝑟 𝑎𝑎 by factor 𝑞𝑞𝑠𝑠+𝛼𝛼
𝜈𝜈+𝛼𝛼

→ rewards 𝑟̅𝑟 𝑠𝑠, 𝑎𝑎

• Replace discount factor 𝛾𝛾 = 𝑒𝑒−𝛼𝛼 by discount factor 𝛾̅𝛾 = 𝜈𝜈
𝜈𝜈+𝛼𝛼

• Discrete-time Markov decision problem amenable to traditional reinforcement learning

Discrete-time Markov decision problem

7

• Simulation-based learning method for problems of type 𝒮𝒮,𝒜𝒜, 𝑝𝑝, 𝑟̅𝑟,𝑃𝑃0, 𝛾̅𝛾

• Learn state-action value function 𝑄𝑄 𝑠𝑠, 𝑎𝑎 = 𝑟̅𝑟 𝑠𝑠, 𝑎𝑎 + 𝛾̅𝛾 ∑𝑠𝑠′∈𝒮𝒮 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑎𝑎 ⋅ max
𝑎𝑎′∈𝒜𝒜(𝑠𝑠′)

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)

• Q-learning iteratively approaches Q-values by estimators �𝑄𝑄(𝑠𝑠, 𝑎𝑎)

1. initialize: put �𝑄𝑄 𝑠𝑠, 𝑎𝑎 ≔ 0 for 𝑠𝑠 ∈ 𝒮𝒮, 𝑎𝑎 ∈ 𝒜𝒜(𝑠𝑠) and 𝑠𝑠 ≔ 𝑠𝑠0

2. select action 𝑎𝑎 ∈ 𝒜𝒜(𝑠𝑠) based on probabilities ℙ(𝑎𝑎 ∣ 𝑠𝑠) depending on values �𝑄𝑄 𝑠𝑠, 𝑎𝑎

3. randomly draw next state 𝑠𝑠′ with one-step probabilities 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑎𝑎

4. update �𝑄𝑄 𝑠𝑠, 𝑎𝑎 ≔ 1 − 𝜂𝜂 ⋅ �𝑄𝑄 𝑠𝑠, 𝑎𝑎 + 𝜂𝜂 ⋅ 𝑟̅𝑟 𝑠𝑠, 𝑎𝑎 + 𝛾̅𝛾 ⋅ max
𝑎𝑎′∈𝒜𝒜(𝑠𝑠′)

�𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) with dynamic

learning rates 𝜂𝜂 = 𝜂𝜂 𝑠𝑠, 𝑎𝑎 , put s ≔ 𝑠𝑠𝑠, and return to step 2

• Determine policy 𝜋𝜋: for 𝑠𝑠 ∈ 𝒮𝒮 choose 𝜋𝜋 𝑠𝑠 ∈ arg max
𝑎𝑎∈𝒜𝒜(𝑠𝑠)

�𝑄𝑄(𝑠𝑠, 𝑎𝑎), put 𝑛𝑛𝑛𝑛𝑛𝑛 ≔ �𝑄𝑄 𝑠𝑠0,𝜋𝜋 𝑠𝑠0

Q-learning for optimal buffer control

8

• Toy instance with two machines and two buffer slots

• Action space 𝒜𝒜: 6 atomic, 5 compound transfer actions 𝑎𝑎

• State space 𝒮𝒮: 25 states 𝑠𝑠, four of which require decision
between two alternative actions

• Upon completion of a part on 𝑚𝑚1, store the part in 𝑘𝑘1 or in 𝑘𝑘2 if
𝑚𝑚2 is occupied and both slots are available?

• Upon completion of a part on 𝑚𝑚2, retrieve a part from 𝑘𝑘1 or from
𝑘𝑘2 if both slots are occupied with parts for 𝑚𝑚2?

• Optimal policy 𝜋𝜋∗: store parts for 𝑚𝑚2 in dedicated slot 𝑘𝑘1
whenever possible and retrieve parts for 𝑚𝑚2 preferably
from shared slot 𝑘𝑘2

Experimental validation: problem instance

• Machine 𝑚𝑚1 can access 𝑘𝑘2,
parts for machine 𝑚𝑚2 can be
stored in 𝑘𝑘1, 𝑘𝑘2

• Transfer costs 𝑐𝑐 𝑎𝑎 = 0
• Unit contribution margin 𝑣𝑣 = 1
• Arrival and processing rates
𝜆𝜆 = 𝜇𝜇1 = 𝜇𝜇2 = 1

• Discount rate 𝛼𝛼 = 0. 03

• 𝒜𝒜 and 𝒮𝒮 rather small, toy instance challenging though

• No transfer cost: Q-learning only guided by the weak
effects of storage and retrieval decisions on production
rate, so high accuracy of estimators �𝑄𝑄(𝑠𝑠, 𝑎𝑎) needed

• In 20 replications of experiment, optimal policy found
within 2,000,000 iterations

• Speed of convergence largely depends on parameters
controlling learning rate 𝜂𝜂 and probabilities ℙ(𝑎𝑎 ∣ 𝑠𝑠)

• Exact values 𝑄𝑄(𝑠𝑠, 𝑎𝑎) obtained by solving Bellman’s
optimality equation with linear programming

• Mean relative error of estimators �𝑄𝑄(𝑠𝑠, 𝑎𝑎): 0.135 %

Experimental validation: results

9

• Buffer control for stochastic flow lines as continuous-time Markov decision problem

• Transformation to discrete-time Markov decision problem

• Q-learning reliably provides optimal stationary buffer control policy for small instance

• Research avenues:

• More advanced methods: deep reinforcement learning representing function 𝑄𝑄(𝑠𝑠, 𝑎𝑎)
as neural network, approximate dynamic programming, e. g., linear programming
with approximate value functions

• More general models: inventory holding cost via permanence rewards, more
general production systems including convergent flows, semi-Markov production
processes, or time durations following phase-type distributions

Conclusions

10

11

Thank you for your attention

Nora Krippendorff
Christoph Schwindt
Operations Management Group
Clausthal University of Technology

operations@tu-clausthal.de
www.wiwi.tu-clausthal.de/produktion

mailto:operations@tu-clausthal.de
http://www.wiwi.tu-clausthal.de/produktion

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12

