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ABSTRACT. We propose a four-stage capacity—oriented hierarchical approach to make—
to—order production. The planning stages of capacitated master production schedul-

ing, multi-level lot sizing, temporal plus capacity planning, and shop floor scheduling

are considered. We formulate the optimization problems arising at the individual

stages and briefly discuss appropriate solution methods. In particular, we devise an

integrated approach to capacitated lot sizing and temporal plus capacity planning of
multi—level products.

RESUME. Nous proposons une approche hiérarchique & quatre niveauz pour l’ordon-
nancement d’une production sur commande. A chaque niveau les effectifs de [’entre-
prise sont pris en considération. Nous traitons la plannification de l’assortissement d
moyen terme, la gestion des stocks, l’ordonnancement des effectifs ainsi que ’ordon-
nancement des ateliers & court terme. A chaque niveau, le probléme d’optimisation est
formulé et des algorithmes appropriés sont présentés. En particulier, nous proposons
une approche intégrée a la gestion des stocks et ’ordonnancement & contraintes de
ressources de la production de produits composés.
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1. Introduction

As the pace in which technology, products, and markets are changing increases,

rapid change also occurs throughout all phases of production. If all products
are manufactured in response to firm customer orders, that is, no inventories
are built up for future sale, we speak of make—to—order production. In addition
to given customer orders, prescribed delivery dates for these orders have to
be met. Make—to—order production is typical of single-item and small-batch
production. It is well-known that make-to—order production becomes more
and more important in practice, whereas mass production for the market is
decreasing.

Several approaches to hierarchical production planning have been discussed
in literature (see, for example, Hax & Meal 1975, Drexl et al. 1994, Steven
1994, Schneeweiss 1995, Carravilla & de Sousa 1995, and Franck et al. 1997).
Most models, however, neither directly refer to make—to—order production nor
observe the limited availability of resources at all production levels. In what
follows, we propose a capacity—oriented hierarchical approach to production
planning tailor-made for make—to—order production, which consists of the four
planning stages

e Capacitated master production scheduling
e Multi—level lot sizing

e Temporal plus capacity planning

e Shop floor scheduling

and where the degree of aggregation of products and resources decreases from
stage to stage. We model the optimization problems arising at the individual
planning stages and briefly sketch how to solve those problems.

2. Capacitated master production scheduling

At the first planning stage, a capacitated master production schedule (abbre-
viated MPS) has to be determined. An MPS specifies the exact amounts and
timing of production of each final product and some main components (together
called main products) such that the resource requirements of work centers or
main branches are as constant and as low as possible over time. The latter
intention of keeping the workload low and constant over time seems to be best
for providing good feasible solutions at all subsequent planning stages. The
planning horizon of the first stage is usually about one year comprising twelve
periods of one month each.

For the final products, the amounts to produce are given by the customer
orders. Also, month—precise delivery dates for the final products are given and
must be met. From the order quantities of final products and the product struc-
ture of the company in consideration (given by bills of materials or a gozinto



graph), the gross requirements for main components at lower production levels
can be computed. This requires the solution of a system of linear equations
and is known as bills of materials explosion (cf. Nahmias 1997 and Neumann
1996).

To find the times when to produce the main products, we model the problem
of determining a capacitated MPS as a resource—levelling project scheduling
problem keeping in mind that we want to have a nearly constant workload
over time. To do so, we first construct a single—project network with resource
constraints for each individual customer order. The manufacture or assembly
of the gross requirement for each main product ¢ of such a customer order is
regarded as an activity ¢ of a project. The model used for the project is an
activity—on—node network, that is, each activity i is assigned to a node i of the
network. The duration or execution time D; of activity ¢ results from summing
up the setup and processing time of product i itself and of the main components
of product ¢ at lower production levels. To obtain the minimum time lag d?,;""
between the start of activity 7 and the start of any subsequent activity k, some
transition time (the sum of conveyance time and some waiting time) generally
has to be added to D;. This transition time is often estimated to be some
surcharge for transportation and handling. Sometimes, a maximum time lag
d7;*® between the start of activities 4 and k¥ may be given in addition, for
example, resulting from delivery dates or maximum reaction time of unstable
chemical substances. A minimum time lag d7%" is modelled by an arc (i, k)
with weight b;x := d7}" in the project network, and a maximum time lag d7}%*
by an arc (k,i) with weight by; := —d[}*®. How to construct an activity—on—
node network in that way, is discussed in more detail in Franck & Neumann
(1997) and Neumann & Schwindt (1997).

The resources required for carrying out the activities of the project are
determined by summing up the respective machine units and workers needed.
To avoid peak demand for resources, the resource requirements for product ¢
are assumed to be distributed uniformly over the execution time D; of activity
1 so that the resource demand rates are constant.

The single—project networks for all customer orders are then joined together
to make a multi—project network. We add a supersource a , a supersink w, and
arcs from « to all sources of the single—project networks and from all sinks of
the single—project networks to w, with appropriate weights. A delivery date or
deadline d; for some product i can be modelled by a maximum time lag of size
d; — D; between the dummy activity corresponding to supersource a and the
start of activity 1.

Next, we want to formulate the resource—levelling problem for the multi—
project network. Let 1,...,n be the real activities or nodes, respectively, of the
project and let the fictitious activities 0 and n+1 correspond to the supersource
a and supersink w, respectively. Thus, V' = {0, 1, ...,n+1} is the set of activities
or nodes, respectively. Let E be the set of the arcs of the network.

Let K be the set of (renewable) resources, say, machines and workers, and
let R, > 0 be the capacity of resource k € K available and r;; be the amount



of resource k used for processing activity ¢ € V where 0 < r; < R, and
Tok = Tpt1,x := 0. Moreover, let S; be the start time of activity ¢ € V where
So := 0. Given a schedule S = (Sg, S1,---,Sn+1)

AS(t):={ieV|S; <t<S;+D;}

is called the active set (i.e. the set of activities in progress) at time ¢ (or in

time interval [t,?+ 1] or period ¢+ 1, respectively) with ¢t = 0,1, ...,d—1, where
d is the given planning horizon, and

’f‘f(t) = Z Tik
i€ AS(t)

is the amount of resource k used at time t. The resource-levelling problem is
then as follows:

Minimize  F(Sop,...,Sn+1) [1]
subject to 2 (t) < R, (keK,t=0,...,d—1) [2]
Sk —Si > bir ((i,k) € E) [3]
So=0, Spp1=d [4]
S; € I>o (ieV) [5]

Inequalities [2] represent the resource constraints and relations [3], [4], and [5]
the time constraints. Possible objective functions F' in [1] are, for example,

T 0 S S () - Bl 6]
KEK E:O

d—1
> gr > [r3(t) — i) [7]
KEK t=0
Y gr max 75(t) [8]

k€K  t=0,...,d—1

where g, > 0 is a weighting factor (e.g. the cost per unit of resource x used),
R, is some target value for the usage of resource &, and 7y, := ZiEV ricD; /E
is the average resource utilization. Objective functions [6] and [7] express the
deviation of the consumption of resources from a target value for the usage
and the average utilization, respectively, of the resources. Objective function
[8] represents the sum of the maximal resource costs per period and is expedient
if very expensive resources have to be purchased to meet the customer orders.

A solution Sy, ..., Sp41 to problem [1] to [5] provides month—precise mile-
stones for the production of the gross requirements for the main products.
The corresponding quantities r2 (t) represent the resource requirements. Pseu-

K
dopolynomial heuristic procedures for the resource-levelling problem without



resource constraints [2] have been proposed for the first time by Brinkmann
& Neumann (1996), which have been tested for problem instances with up to
100 activities and several resources. Neumann & Zimmermann (1997) have
devised polynomial heuristics for the resource-levelling problem with resource
constraints [2], which approximately solve problem instances with 500 activities
and several resources within reasonable computing time.

3. Multi-level lot sizing

At the stage of lot sizing (LS stage, for short) the main products are decom-
posed into intermediate products (final products and subassemblies) for which
week—precise production quantities (also called lots or production orders) are
computed. The gross requirements for the main products are given by the
MPS. The planning horizon of roughly three months comprises 7' = 13 periods
of one week each.

A final product is generally made up of several subassemblies. The product
structure is assumed to be general, that is, the corresponding gozinto graph
represents an arbitrary acyclic digraph. The production of the subassemblies
and final products requires several resources. Each resource corresponds to a
group of uniform machines. The processing of a product on a resource incurs
setup cost, setup time, and processing time. Setup and processing times are
given in time units (for example, hours). For a given resource, the (aggregated)
per—period availability corresponds to the workload in time units which can be
done by the uniform machines of the corresponding group within one week.
The objective is to determine lots for the intermediate products such that no
backlogging occurs, the per—period availabilities of all resources are observed
in all periods, and the sum of setup and inventory holding costs is minimized.
This problem can be formulated as a multi-level capacitated lot sizing problem
MLCLSP.

Let P be the set of (intermediate) products and X be the set of resources.
For each j € P, an inventory holding cost h; per period and unit of product
j and a setup cost s; are given. The input coeflicient aj; corresponds to the
number of units of product j which are directly installed into one unit of product
l € §;, where S; is the set of direct successors of product j in the product
structure. d;; denotes the gross requirements of product j in period 7 (7 =
1,...,T). 9. and pj,. correspond to the setup and the processing workloads
of product j on resource s, respectively. For each resource x € K the per—
period availability A, has to be observed. We introduce three types of decision
variables. The lot size of product j in period 7 is denoted by g;,. y; represents
the stock of product j at the end of period 7. Finally, the binary variables v;,
are defined to be 1 if the lot size of product j in period 7 is positive, and 0
otherwise.

The multi-level capacitated lot sizing problem can be formulated as follows:



T
Minimize ) Y (hjyjr + 8;7jr) [9]
T=1j€P

subject to yjr—1 +qjr — X auqir — Yjr =djr (JEP,7=1,...,T) [10]
l€S;

Z;)(ﬁjﬂjr +Djrir) < Axr (kek,7=1,...,T) [11]
Jj€

4jr — Mz <0 (jeP,r=1,....T) [12]
Yjo =0 (j€P) [13]
qJTZ(L yJTZO (JGP,T:].,,T) []‘4]
- €{0,1} GeP,r=1,...,T) [15]

The objective function in [9] is the sum of setup and inventory holding
costs. Relations [10] represent the inventory balance equations which prevent
backlogging. By inequalities [11] the limited per—period resource availabilities
are observed. Inequalities [12] with M := maxjep > ._, d;, ensure that the
binary setup variable 7;, equals 1 exactly if there is a corresponding lot of
size ¢j; > 0. By [13] we initialize the initial stocks with zero. Constraints
[14] and [15] define the decision variables to be nonnegative reals and binaries,
respectively.

Due to setup times and resource constraints the feasibility problem of ML-
CLSP is NP—complete. The most advanced heuristic for MLCLSP is the
Lagrangean—based approach of Tempelmeier & Derstroff (1993, 1996). By re-
laxing the inventory balance equations [10] and capacity constraints [11], a
decomposition of the original problem into several single-level uncapacitated
lot sizing problems SLULSP is obtained, which can be solved to optimality in
time O(|P|) by dynamic programming. Violations of the relaxed constraints are
taken into consideration by a linear penalty function whose Lagrangean multi-
pliers are updated by a subgradient optimization procedure. A lower bound on
the minimum objective function value can be derived from the optimal solu-
tions of the SLULSP instances. Upper bounds are obtained by the generation of
feasible solutions. A solution for which the inventory balance equations are ob-
served can be computed as follows. First, the SLULSP instances corresponding
to final products are solved. From the resulting lot sizes, the secondary require-
ments of products at the immediate predecessor level in the product structure
are generated by a bills of materials explosion. These secondary requirements
represent the demand of the SLULSP instances of products at that predecessor
level. In the same way we proceed. A feasible solution satisfying the capacity
constraints is constructed by a so—called heuristic scheduling procedure which
tries to shift workload from periods with capacity overloads to periods with
positive left—over availabilities. This is done until a feasible solution has been
determined or a prescribed maximum number of passes has been attained.



4. Temporal plus capacity planning

Intermediate products may be further decomposed into individual products (fi-
nal products, subassemblies, and main components). At the stage of temporal
plus capacity planning (abbreviated TCP), shift—precise production orders for
all individual products have to be determined for each week (period of the LS
stage) observing the limited resources (groups of uniform machines).

In what follows, the processing of an individual product will be referred to
as a job. A job can be represented by a sequence of tasks where a task T;
corresponds to the processing of an individual product j on resource k € K.
For each individual product j the task sequence (Ty;;,...,T.;;) is assumed to
be given by process plans. a; and w; denote the first and last group of uniform
machines in the task sequence of product j, respectively.

The weekly gross requirements for the individual products can be found
by a bills of materials explosion from the production orders for intermediate
products computed at the LS stage. Since all shift—precise production orders
have to be carried out within one week, we aim at minimizing the maximal
completion time of all jobs, i.e. the makespan.

For a period 7 of the LS stage, cumulative workload constraints

Z(ﬂjnq/ﬁ' +Pganr) S ANT
JEP

have been observed. Resource requirements as well as resource availabilities
have been measured in time units. Up to now, we have not taken into account
that, in general, we have to cope with noncumulative capacity constraints.
Since the number of individual uniform machines which are aggregated to a
resource is limited, the maximal number of resource units available at any
point in time is limited, too. At the LS stage, say m uniform machines of a
shop are aggregated to one resource k with availability A., = mApg, where
Aps represents the length of a lot sizing period in time units. At the TCP
stage, the corresponding resource has a capacity of R, = m, since at any point
in time, items can be processed on at most m machines in parallel.

Obviously, the limited capacity of resources may give rise to waiting times
which cannot be taken into consideration by cumulative workload constraints.
In particular, these waiting times depend on the manner how resource conflicts
between competing tasks are resolved.

The problem of scheduling tasks subject to resource capacity constraints
such that the makespan is minimized can be modelled as a resource—constrained
project scheduling problem. A given set V = {0,1,...,n,n + 1} of activities
(corresponding to the start of the project, the tasks T,; which have to be
executed during the current period 7 of the LS stage, and the completion of
the project) have to be scheduled such that time constraints between activities
are observed and the resource requirements for the activities do not exceed
the capacity of any resource at any point in time. FEach activity ¢ € V is
associated with a node in an activity—on-node project network. An arc (i, k)



from activity i to activity k weighted by b;; represents a minimum time lag
d;’,;i" of b;, units of time between the start of activities ¢ and k. In case of
bir < 0, the negative minimum time lag b;;, can be interpreted as a maximum
time lag d;}*® between the starts of activities k and i. By E we again denote
the set of arcs of the project network. During its duration D;, activity ¢ uses
rix units of the capacity R, of resource k € K. Let S; be the start time of
activity i and S = (S, ..., Sn+1) be a schedule. As in Section 2, let AS(t) be
the active set and 72 (t) be the usage of resource x at time ¢. With T being an
upper bound on the minimal project duration, the resource—constrained project
scheduling problem with minimum and mazimum time lags RCPSP/max can
be formulated as follows:

Minimize  Spy1 [16]
subject to  r2(t) < R, (keK,t=0,...,T —1) [17]
Sk —S; > b (i, k) € E) [18]
S; € Lo (teV) [19]

Objective function S,41 in [16] represents the project duration. Inequalities
[17] secure feasibility with respect to the capacity constraints. Inequalities [18]
and [19] represent the time constraints.

In the following, we will sketch how to generate an appropriate RCPSP /max
instance for the scheduling of production orders of a period 7 at the lot sizing
stage.

Let 7 D P be the set of individual products. First, we determine production
quantities gjr for products j € P\ P by a bills of materials explosion. Let
P, ={j€ 5|qu > 0} be the set of products j produced in period 7. By
definition, a task uses a constant amount of resources during its processing.
If, for instance, product j has to be processed subsequently on several groups
k € K of uniform machines, a task corresponds to the processing of all g;,
units of j on one of these resources k. Let mz,; > 0 be the number of units of
resource & required for the processing of task T;. The setup time 7, ; of task
T; corresponds to the setup workload per resource unit ;. /mr,; of product
J on resource . By pr,; we denote the processing workload per resource unit
pjr/mr,; of product j on resource k. For the duration Dr,; of task Ty; we
obtain

Dy, ; =Y71,; + qjrpr;

Let ¢ = T,; and k = T); be two subsequent tasks in the task sequence of
product 5 € P,. The execution of task k can start after the completion of
the first unit of product j in task i. If pr < p;, however, task k would be
interrupted after each completion of a unit of product j. Thus, we determine

a minimum time lag b;;, between the start of tasks ¢ and & as follows:



by, = {191' +pi — Vg, if pi < py
e 9 + qjrPi — (qu - l)pk — ¥4, otherwise

Now, let i = T,,;; and k = Ty,;; be the last task in the task sequence of product
j and the first task in the task sequence of a product [ € S;, respectively. By
AS(j) = (I, ..,1ln,;) we denote the so—called assignment sequence of product
Jj (U, € Sijforallp = 1,...,n;). AS(j) determines the sequence in which
completed units of product j are assigned to products [, at the immediate
successor level in the product structure. The processing of the first unit of
product j which will be available for the assembly of product [, is started
after the completion of the last unit of product j dedicated to the assembly of
product !,. Heuristics for the generation of appropriate assignment sequences
can be found in Neumann & Schwindt (1997). Let | = [, be the v-th product in
AS(j). For the minimum time lag b;; between the starts of ¢ and k we obtain

v—1
i+ X0 aji, qu,rpi + ajpi — Uk, if ajipi < pi
bi, == p=1
Y+ Y aji,q,pi — (@i — 1)pr — U, otherwise
p=1

The resource capacities R, can be derived from the availabilities A, of the lot
sizing stage as follows:

R, = AnT/ALS

The renewable resource requirements r;, represent the number of units m; used
for the processing of task i = T,;:

Tig = T,

Finally, we introduce a maximum time lag of Arg units of time between the
initial task 0 and the completion task n + 1 of the project. If the RCPSP /max
instance obtained by the calculation of activity durations, minimum and maxi-
mum time lags, resource capacities, and resource requirements is solvable, there
is a task schedule S” for the production orders of period 7 such that all tasks
are completed within one lot sizing period, that is, S}, < Ars. Let Arcp
denote the length of a shift in time units (for example, eight hours). The pro-
duction orders of the o—th shift in the current period 7 for individual products
j € P, correspond to the jobs with final tasks i = T}, ;5 for which it holds that

(0‘ — 1)ATCP < S: +D; < UATCP

RCPSP/max can be solved by a (truncated) branch—and-bound algorithm
by Schwindt (1998). In each step, this algorithm solves optimization problems



for which the resource constraints [17] have been relaxed. To take account of
the limited resource capacities, additional disjunctive precedence constraints

mingev, S; > minsev, (S; + D;) [20]

between nonempty sets of activities V3 and V5 are introduced instead.

Problem [16], [18], and [19] subject to additional disjunctive precedence
constraints [20] can be solved to optimality by a pseudo—polynomial fix—point
algorithm. Now let us assume that for the resulting schedule S*, there is an
active set AS" (t) such that due to the resource constraints not all activities
i€ AST (t) can be processed simultaneously. We then examine all possibilities
of delaying the minimum number of activities k € A i (t) which are necessary
to resolve the resource conflict. The delayed activities are shifted to the point
in time where the first activity i € AS" (t) which is not delayed has been
completed. More precisely, we enumerate all partitions {V;,Va} of AST (t)
such that V; represents an inclusion—maximal set of activities which may be
processed at the same time. The selection of a partition {V;,V2} corresponds
to the introduction of additional disjunctive precedence constraints as given by
[20]. A feasible schedule has been determined if the optimal solution ST to
[16], [18], and [19] subject to the additional constraints of type [20] is resource—
feasible.

A preprocessing algorithm, several fathoming rules, and tight lower bounds
allow for a substantial reduction in size of the branch and bound tree (cf.
Schwindt 1998).

5. Integrated Lot Sizing and Temporal plus Capacity Planning

Let 8™ = (S§,-..,S5,1) be the schedule generated at the TCP stage for period
7 of the lot sizing problem. If the completion time S} +D; of a task ¢ exceeds the
given deadline Ay g, S™ does not represent a feasible schedule for the processing
of the production orders of products j € P,. In that case, we have to determine
new lot sizes for periods 1,..., 7. The lot size of at least one product j € P, has
to be reduced. This can be done by reduction of the availabilities of resources
whose capacity has been violated. Let A,, := max;cy.p;.>0(ST + D;) be the
completion time of the last task which requires resource k. If A, > Arg, we
have to decrease the availability of resource k in period 7 for the next run of
the lot sizing step as follows:

AK?T - ALS

A,; := min {(1 - VAgr, E (Yj + Pjrgjr) — e} with € > 0

®T jEP.

The original availability A, is diminished proportionally to the relative dead-
line violation and a control parameter a € (0,1]. Now, let us assume that the
modified availability is still sufficient to process the same production orders at

the LS stage (that is, A, > Zjef, (Yjx +Pjrgjr))- In this case, we enforce the



reduction of at least one lot size in period 7. A similar approach for the special
case of a job shop environment can be found in Lambrecht & Vanderveken
(1979).

An implicit assumption of the inventory balance equations is that each
product | can be processed at the same time as its predecessor products j
in the product structure. Since the assembly of product ! can only be started
after the completion of at least aj; units of product j, we introduce a lead time
2(j,7) for the production order of product j. Thus, relation [10] in problem
MLCLSP is replaced by yjr—1 + ¢jr—z(j,r) — Zlesj a1qir — Yjr = djr. For the
determination of appropriate lead times we have to take into account that the
above reduction of resource availabilities leads to smaller lot sizes in the next
run of the lot sizing heuristic:

max A, — ST,

) REK i Apr — As
2(4,7) = 1—amax ———*=
Ars K€K Ag,

Figure 1 summarizes the algorithm for integrated lot sizing and temporal
plus capacity planning.

Solve MLCLSP by algorithm of Tempelmeier & Derstroff
IF no feasible solution is found THEN STOP
T:=0
WHILE 7 < T
Generate RCPSP /max for period 7
Solve RCPSP /max by algorithm of Schwindt
IF A, <Aps Ve K THEN 7:=7+1
ELSE
Update resource availabilities A,
Determine lead times z(j, 7)
Solve MLCLSP by algorithm of Tempelmeier & Derstroff
IF no feasible solution is found THEN STOP
T:=0
END (*IF*)
END (*WHILE*)

Figure 1. Integrated lot sizing and temporal plus capacity planning



6. Shop floor scheduling

The final planning stage is concerned with processing the jobs on the individual
machines so that their due dates are met. The due date of a job is defined to be
the completion time of the respective production order determined at the TCP
stage. The time horizon for shop floor scheduling is often one working day and
time units (length of periods) are typically anywhere from 5 to 60 minutes.

Let J be the set of all jobs, and let §; be the due date and C; be the
completion time of job j € J. Then £;(d; — C;) is an earliness cost when job j
is completed early and 7;(C; — J;) is a tardiness cost when job j is completed
late, where €; > 0 and 7; > 0 are the earliness and tardiness cost of job j,
respectively, per unit time.

hi(Cy) :=¢e;(6; — Cj)* +7;(C; — 6;)

where (2)* := max(z,0) represents a penalty cost for job j. Possible objective
functions to be minimized are

(@) X2 hi(Cy),
JjET
b h;i(C5),
(b) Ijnea}c i(Cj), or
(¢) a linear combination of such a sum— and max—penalty cost.

The shop floor problem to be solved consists of two parts. In general, sev-
eral uniform machines of the same type are available which differ in speed.
Thus at first, if a job j € J has to be processed on a certain group of uniform
machines (also called machine type) k € K, it has to be assigned to an indi-
vidual machine of that type. Recall that the processing of job j on machine
type & corresponds to a task T,;. The execution of job j on an individual
machine M, of type & is termed an operation o,;. The different operations or
respectively uniform machines of the same type belonging to a task are viewed
as modes, and the problem to be solved is called a mode assignment problem.
Given a task sequence for each job, a (feasible) solution to the mode assignment
problem provides an operation sequence for the corresponding job. Solution
procedures for the mode assignment problem (for example, a heuristic method
where for each task, the corresponding modes are ordered according to nonde-
creasing processing times) have been proposed by Serafini & Speranza (1994)
and Kolisch (1995).

Secondly, given an operation sequence for each job, an earliness—tardiness
job shop problem with one of the objective functions (a), (b), or (c) has to be
solved. We briefly want to sketch a two—step approach to approximately solving
that job shop problem.

In step 1, we apply the well-known priority—rule method by Giffler and
Thompson (cf. Giffler & Thompson 1960 or Neumann 1996) for the job shop



problem with an appropriate priority rule, which takes early and late comple-
tion of jobs into account. For each eligible operation o,; (i.e. all predecessors
of o,; have already been scheduled) of a job j, we determine an optimistic es-
timate OC\; and a pessimistic estimate PC; of the completion time C; of job
j. For the optimistic estimate OC};, we assume that the remaining operations
of job j are the first to be scheduled on the respective machines, and for the
pessimistic estimate PC,;, the remaining operations of job j are the last to be
scheduled. To determine an estimate PCy; for job j, the sequences of the jobs
j' # 7 on all machines have to be known. The problem of finding optimal job
sequences, however, is as hard as the original job shop problem. Thus, we only
schedule the unscheduled operations of the jobs j' in a simple way, for example,
job after job observing the operation sequence for each job, and carry out some
local left—shifts.

For the objective functions (a), (b), or (c¢) it is then expedient to choose the
priority value

vj = Tj(PCrj — ;)" — £j(6; — OCxj)* [21]

for operation o, ;. That is, the smaller the due date §; for job j is in comparison
with OCy; and PC,; the greater is the priority value v,;. If eligible opera-
tions o,; are scheduled according to nonincreasing values v,;, then late jobs
are preferred to early jobs. Moreover, the Gifler—Thompson heuristic tries to
schedule an eligible operation each time a machine is freed, which is appropriate
for minimizing makespan but not necessarily for minimizing earliness—tardiness
objective functions. Thus, some additional right—shifting of jobs seems be rea-
sonable which will be done in step 2.

In step 2 of the approach, given the schedule found in step 1, the operations
are locally right—shifted so that the earliness—tardiness objective function (a),
(b), or (c) is minimized. Let job j. be that job which is processed immediately
after job j on machine M, in the schedule computed in step 1, and let v;;, > 0
be the idle time on machine M, between the completion of operation o.; and
the start of operation oy, . Moreover, let My, be that machine on which job j
is processed immediately after processing on machine M, and let wyx; > 0 be
the waiting time of job j between the completion of operation o,; and the start
of operation o,,;. If each operation oy; is right—shifted s,; > 0 time units, it
must hold that

Snj - Snj,c S Ujj,c (MH € M]7.7 € \7) [22]
Skj — shljj S wﬁlﬁ?j (Mn € Mjaj € j) [23]
where M is the set of machines on which job j has to be processed. Let M,,; €

M be the last machine on which job j is processed. Then the minimization
of objective function (a) leads to the problem



Minimize Y [6j(8; — Cj — 8u,5)" + 75(Cj + 80,5 — ;)]

jeJ
subject to  [22], [23]
Sn]‘ZO (M,.;GM]',J'EJ)

To transform that optimization problem into a linear program, we introduce
variables z; and y;, which represent the earliness and tardiness, respectively,
of the right—shifted job j. Then we obtain the linear program

Minimize > ez + Tiy4]
jeET
subject to  [22], [23]

T+ 8u;5 > 0; — C; (GeJg)
Yj = Sw;j > Cj —§; (JeJ)
$pj > 0 (M, e Mj,j€)
z; >0,y; >0 (jeJT)

Objective functions (b) and (¢) can be dealt with analogously.

An improvement of the solution procedure for the shop floor scheduling prob-
lem is to include the mode assignment in step 1 of the job shop heuristic. That
is, both the task to be scheduled next on a machine of a certain type and
the individual machine of that type on which the operation is to be processed
should be chosen using some appropriate priority rule. Let M be the set of all
machines. For simplicity, we assume that each job has to be processed on each
machine type exactly once. At the beginning we set M; := M for all j € J.
Then in step 1, we apply the Gifler—Thompson heuristic as above using the
priority values v,; for eligible operations o,; with M, € M; given by [21]. The
operation o,; to be scheduled next is always one with largest v,;. Once o; is
scheduled, we eliminate all machines of the same type as M, from M;.

A different three—step decomposition approach for solving the shop floor
scheduling problem has been proposed by Serafini & Speranza (1994). In step
1, a mode-assignment problem is solved by a sorting heuristic. In step 2, a
sequencing problem (i.e. computing a job sequence for each machine) is solved
by an appropriate shifting bottleneck procedure. In step 3, a scheduling prob-
lem (i.e. finding the start times of all operations) is modelled as a network
flow problem and solved by the network simplex method. The three steps are
linked by feedback and can be solved iteratively.



7. Conclusions

A capacity—oriented hierarchical approach to make—to—order production has
been presented, which consists of four planning stages illustrated in Fig. 2.
For the individual planning stages, we have formulated suitable optimization
problems and briefly discussed appropriate solution methods. Recall that for
the lot sizing and temporal plus capacity planning stages, the solution proce-
dure requires alternating between the two stages until an appropriate feasible
solution at the latter stage is found.

Important areas of future research are, for example, the development of more
efficient solution methods for the multi—-mode earliness—tardiness job shop prob-
lem. Moreover, similar hierarchical approaches to different types of production
should be devised.

Planning stage Planning Length of Output
horizon period
Capacitated master 1 1 th Milestones for
ear mon .
production scheduling y main products
Y
Multi-level Production orders
> lot sizing 3 months 1 week for intermediate
\L products (lots)
Time-phased
Temporal plus production orders
capacity planning 1 week 1 shift for individual
products (jobs)
Y
: 1 hour or i hedul
Shop floor scheduling 1 day several minutes Machine schedules
Figure 2. Qverview of the planning stages
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