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1 Introduction

In literature on project management, a project is generally viewed as a one-
time undertaking with a specific objective. A project can be divided into
subtasks (activities), which require time, personnel, and equipment for their
execution. The life cycle of a project consists of the five phases conception,
definition, planning, execution, and termination (cf. Klein 2000, Sect. 1.2).
In the conception phase, a feasibility study and an economic and risk anal-
ysis are performed to decide on the execution of the project. The definition
phase specifies the project objective, the organizational form, major tasks
and corresponding milestones, and the resources assigned to the project.
The first step of the planning phase is the structural analysis, where the
project activities and temporal relationships among them are identified. The
subsequent time, resource, and cost analyses provide the processing time,
the resource requirements, and the payment associated with each activity.
Moreover, the time analysis quantifies the temporal constraints between ac-
tivities. Next, the temporal scheduling step, where the resource constraints
are disregarded, yields the earliest and latest start and completion times
and the slack times of the activities as well as the critical activities and the
shortest project duration. In the last step of the planning phase, the activi-
ties are scheduled subject to the temporal and resource constraints and the
objective specified. The resulting schedule is the basis for the project im-
plementation. In the following execution phase, the progress of the project
is monitored against the schedule, which generally results in an repeated
updating of the project schedule. The final termination phase evaluates and
reviews the project in support of future decisions.

For managerial aspects of the five phases of the project life cycle, we refer
to Meredith and Mantel (1999), Sect. 1.3, and Kerzner (2000), Sect. 2.7. This
paper is concerned with models and methods for the planning phase. More
specifically, we deal with resource-constrained project scheduling problems,
where scarce resources have to be allocated over time to the execution of the
project activities such that all temporal constraints are observed and some
objective function is minimized. We only treat the case of deterministic
project scheduling, where all input data are assumed to be deterministi-
cally known in advance. An overview of different types of stochastic project
scheduling problems can be found in Neumann (1999) and Möhring (2000).
In recent years, several survey papers have reviewed new results in determin-
istic project scheduling (see, e.g., Elmaghraby 1995, Özdamar and Ulusoy
1995, Herroelen et al. 1998, Brucker et al. 1999, or Kolisch and Padman
2001). The present paper differs from those survey papers by

(i) emphasizing on the case of general temporal constraints given by
minimum and maximum time lags between project activities,

(ii) discussing and classifying a great variety of regular and nonregular
objective functions,

(iii) presenting a structural analysis of the feasible region that can be
exploited for developing efficient solution procedures, and
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(iv) studying applications of project scheduling to production and opera-
tions management and investment projects.

The paper is organized as follows. In Section 2, a basic project schedul-
ing problem with limited renewable resources is formulated. In Section 3, we
study structural properties of the feasible region of our basic project schedul-
ing problem. We will see that the feasible region is generally disconnected
and represents the union of finitely many so-called order polytopes. Several
different classes of objective functions important from a theoretical or prac-
tical point of view are discussed in Section 4. Also, we state which specific
points of the feasible region represent possible optimal solutions to the cor-
responding project scheduling problems. Section 5 is concerned with exact
solution methods of the branch-and-bound type, where we exploit the struc-
tural results from Section 4. Heuristic solution procedures are dealt with in
Section 6. In particular, we briefly sketch truncated branch-and-bound pro-
cedures, priority-rule methods, and schedule-improvement techniques and
summarize the results of an experimental performance analysis. Section 7 fo-
cuses on several generalizations of the basic project scheduling problem. We
study the case of calendarization, where renewable resources are not avail-
able during certain time intervals and interruptible and non-interruptible
activities occur. Also, we discuss so-called cumulative resources, which rep-
resent storage facilities needed between different production stages in pro-
cess industries. Moreover, we deal with the case where there are sequence-
dependent changeover times between the processing of successive activities
on certain resources. Finally, we are concerned with multi-mode scheduling
problems with renewable and nonrenewable resources, where each activity
may be carried out in one out of several alternative execution modes. In
Section 8, we present applications of resource-constrained project schedul-
ing to make-to-order production in manufacturing, batch scheduling in pro-
cess industries, and investment projects. Section 9 is devoted to concluding
remarks.

2 Basic project scheduling problem

We consider a project that consists of n activities i = 1, . . . , n with duration
or processing time pi ∈ N each of which is carried out without interruption.
In addition, we introduce the dummy activities 0 and n + 1 where p0 =
pn+1 = 0, which represent the beginning and completion, respectively, of
the project. Then V = {0, 1, . . . , n, n + 1} is the set of all activities.

Let Si ≥ 0 be the start time of activity i ∈ V , where S0 = 0. Thus, the
project always begins at time 0, and Sn+1 represents the project duration.
We assume that Sn+1 ≤ d, where d is a prescribed maximum project dura-
tion. A sequence of start times S = (S0, S1, . . . , Sn+1) with S0 = 0 is called
a schedule.

In project scheduling it is expedient to assign a network to the project
under consideration. To do so, we identify the activities 0, 1, . . . , n+1 of the
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project with the nodes 0, 1, . . . , n + 1 of a network. If there is a prescribed
minimum time lag dmin

ij ∈ Z≥0 between the start of two different activities
i and j, i.e.,

Sj − Si ≥ dmin
ij (1)

we introduce an arc 〈i, j〉 with weight δij = dmin
ij (see Figure 1). In the

special case dmin
ij = pi, (1) is called a precedence constraint. If there is

a given maximum time lag dmax
ij ∈ Z≥0 between the start of activities i

and j, i.e.,
Sj − Si ≤ dmax

ij (2)

we introduce a backward arc 〈j, i〉 with weight δji = −dmax
ij (cf. Figure 1). In

particular, we assume that there is a maximum time lag dmax
0,n+1 = d between

the project beginning and project completion, which guarantees that the
project is terminated by the prescribed maximum project duration d.

i -
δij = dmin

ij
j

δji = −dmax
ij

6

Fig. 1 Minimum and maximum time lags

In this way, a unique activity-on-node project network N with node
set V = {0, 1, . . . , n + 1}, arc set E, and arc weights δij (〈i, j〉 ∈ E) can
be assigned to the project in question (cf. Neumann and Schwindt 1997,
Neumann et al. 2001, Sect. 1.2). Due to the presence of maximum time
lags in addition to minimum ones, the project network N contains cycles.
The two types of inequalities (1) and (2) can be combined in the temporal
constraints

Sj − Si ≥ δij (〈i, j〉 ∈ E) (3)

A schedule S which satisfies (3) is called time-feasible. The set of time-
feasible schedules is denoted by ST . It holds that ST 6= ∅ exactly if net-
work N does not contain any cycle of positive length (cf. Roy 1964, Neu-
mann 1975, Sect. 6.4).

Now assume that a setR of renewable resources are required for carrying
out the activities of the project. Renewable resources are available at each
point in time during the execution of the project independently of their
utilization formerly (for example, machines, manpower, or equipment). Let
Rk ∈ N be the capacity of renewable resource k available and rik ∈ Z≥0 be
the amount of resource k used by activity i, where rik ≤ Rk (i ∈ V, k ∈ R).

Given a schedule S = (Si)i∈V ,

A(S, t) := {i ∈ V | Si ≤ t < Si + pi}
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is the set of activities in progress, also called the active set, at time t ∈ [0, d].

rk(S, t) :=
∑

i∈A(S,t)

rik

is then the amount of resource k ∈ R used at time t ∈ [0, d] given schedule S.
The resource constraints say that

rk(S, t) ≤ Rk (k ∈ R, 0 ≤ t ≤ d) (4)

A schedule S satisfying (4) is called resource-feasible. A schedule which
is both resource- and time-feasible is called feasible. The set of feasible
schedules is denoted by S.

The basic project scheduling problem to be studied in what follows con-
sists of minimizing some objective function f : Rn+2

≥0 → R on the set S of
feasible schedules or in more detail,

Min. f(S)
s.t. Sj − Si ≥ δij (〈i, j〉 ∈ E)

Si ≥ 0 (i ∈ V )
S0 = 0
rk(S, t) ≤ Rk (k ∈ R, 0 ≤ t ≤ d)


(P)

A feasible schedule S which minimizes objective function f on S is
called optimal. We assume that f is lower semicontinuous, i.e., f(S) ≤
lim infS′→S f(S′) for all schedules S. Since the feasible region S of (P) is
compact, f thus attains its minimum on S provided that S 6= ∅. All objec-
tive functions f discussed subsequently are lower semicontinuous but not
necessarily continuous.

3 Structural questions

Obviously, the set of time-feasible schedules ST represents a (convex) poly-
tope. The set of feasible schedules S, however, is generally disconnected and
represents the union of finitely many polytopes, and the decision problem
whether or not S 6= ∅ is NP-complete (cf. Bartusch et al. 1988). Next, we
review an order-based structural analysis of S (cf. Neumann et al. 2000,
2001, Sect. 2.3, and Zimmermann 2001, Sect. 2.1), which will turn out to
be useful for solving the basic project scheduling problem (P) with different
objective functions f .

Let O ⊂ V × V be a strict order (that is, an asymmetric and transitive
relation) in activity set V . Then

ST (O) := {S ∈ ST | Sj ≥ Si + pi for all (i, j) ∈ O}

is called the corresponding order polytope. Strict order O is said to be time-
feasible if ST (O) 6= ∅, and feasible if ∅ 6= ST (O) ⊆ S. Recall that a feasible
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strict order O in V is termed inclusion-minimal if there is no feasible strict
order O′ in V with O′ ⊂ O. Then the basic structural theorem, which was
first proved by Bartusch et al. (1988), is as follows:

Theorem 1 Let O be the (finite) set of all inclusion-minimal feasible strict
orders in activity set V . Then S =

⋃
O∈O ST (O).

For the project network shown in Figure 2 and a given resource capacity
of R = 3, Figure 3 illustrates a covering of the feasible region S by seven
inclusion-maximal order polytopes ST (O), cf. Neumann et al. (2000).
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Fig. 2 Project network N with a single resource

Given a schedule S ∈ ST ,

O(S) := {(i, j) ∈ V × V | i 6= j, Sj ≥ Si + pi}

is the strict order induced by schedule S. The corresponding order polytope
ST (O(S)) is called the schedule polytope of S. ST (O(S)) is the set of all
time-feasible schedules that belong to the schedule network N(O(S)), which
results from the underlying project network N by adding an arc 〈i, j〉 with
weight pi for each (i, j) ∈ O(S). If the latter arc 〈i, j〉 already belongs to N ,
then its arc weight δij is replaced by max(pi, δij).

Sometimes we have to consider distinct schedules S that give rise to the
same precedence constraints Sj ≥ Si + pi and thus induce the same strict
order O(S). We then define

S=
T (O(S)) := {S′ ∈ ST (O(S)) | O(S′) = O(S)}

Set S=
T (O(S)) is called the equal-order set for schedule S and represents a

polytope generally without a part of its boundary. Since S ∈ S=
T (O(S)) for

each S ∈ S and there are only finitely many distinct strict orders O(S), we
obtain S =

⋃
S∈S S=

T (O(S)) and thus a finite partition of feasible region S.
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Fig. 3 Covering of the feasible region S by seven order polytopes

Special points of S are of particular interest and will turn out to be
possible optimal solutions to basic project scheduling problem (P) for spe-
cific objective functions f . Let M be a compact subset of Rn+2. Recall that
S ∈M is a minimal point (or a maximal point) of M exactly if there is no
S′ ∈M, S′ 6= S, with S ≤ S′ (or S′ ≥ S, respectively) where “≤” is meant
componentwise. S ∈M is an extreme point of M precisely if S does not lie
on a line segment that joins two other points of M. S ∈ M is said to be a
local extreme point of M if S does not lie on a line segment that joins two
other points of M and totally belongs to M. Finally, a schedule S is called
locally order-optimal for objective functions f if S is a local minimizer of f
on the order polytope ST (O) of some O ∈ O. In Figure 3, S1 is a minimal
point of S, S2 is a maximal point of S, S3 is an extreme point of S (and a
local extreme point as well), S4 is a locally order-optimal schedule for some
objective function f , S5 is a local extreme point of S but no extreme point
of S, S6 is a minimal point of ST (O(S6)), i.e. the square with corners S6,
S7, S′, and S′′, and S7 is an extreme point of ST (O(S6)).

4 Different types of objective functions

In this section, we discuss some special (mostly nonregular) objective func-
tions f of scheduling problem (P) that are important in practice (cf. Neu-
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mann and Zimmermann 1999a,b, Klein 2000, Sect. 3.4, Kimms 2001, Neu-
mann et al. 2001, Sect. 3.1 and 3.3, and Nübel 2001). Moreover, we state
which specific points of feasible region S represent possible optimal solu-
tions to the respective scheduling problems, where we always assume that
S 6= ∅.

Recall that objective function f is said to be regular if f is nondecreasing,
i.e., S ≤ S′ implies f(S) ≤ f(S′). Obviously, there is always a minimal point
of S that represents an optimal solution to (P) with regular f . In literature,
minimal points of S are called active schedules (see Sprecher et al. 1995 and
Neumann et al. 2000). Examples of regular functions f are

(i) the projection duration Sn+1, which equals the makespan Cmax known
from machine scheduling (cf. e.g., Pinedo 2001, Sect. 2.1) and repre-
sents the objective function most frequently used in practice,

(ii) the maximum lateness Lmax = maxi∈V Li, where Li := Si + pi − di

is the lateness and di ∈ Z≥0 is a given due date for activity i, and
(iii) the weighted tardiness

∑
wT

i Ti, where wT
i ∈ Z≥0 and Ti := max(Li, 0)

is the tardiness of activity i.

Now we turn to nonregular objective functions. The simplest nonregular
functions are the so-called antiregular or nonincreasing functions f , i.e.,
S ≤ S′ implies f(S) ≥ f(S′). Obviously, there is always a maximal point
of S that represents an optimal solution to (P) with antiregular f . An
example of an antiregular function is the weighted earliness

∑
wE

i Ei, where
wE

i ∈ Z≥0 and Ei := max(−Li, 0) is the earliness of activity i.
If the underlying objective function f is linear, there is always an extreme

point of S that represents an optimal solution to (P). Function f given by
f(S) :=

∑
i∈V wiSi with wi ∈ Z is linear. If wi > 0, activity i should be

executed as early as possible, and for wi < 0, activity i should be carried
out as late as possible.

For a convex function f , local minimizers on polytopes ST (O), O ∈ O,
are global minimizers as well and can efficiently be determined by so-called
steepest descent procedures (cf. Simmons 1975, Sect. 8.1, and Schwindt
2000). Thus for convex objective functions f , it is sufficient to determine
one local minimizer of f on each order polytope ST (O), which is also called
a locally order-optimal schedule. An example of a convex function is the
weighted earliness-tardiness

∑
(wE

i Ei+wT
i Ti). The latter objective function

is important for just-in-time production and rescheduling. By rescheduling
we mean the following. In practice, input data such as processing times of
activities or the amount of resources available are often subject to change,
for example, if workers are absent or machines break down. As a conse-
quence, a previously feasible schedule generally becomes infeasible. Then
we want to find a new feasible schedule “as close as possible” to the old
one because larger deviations cause additional difficulties. This can be done
by solving a project scheduling problem with weighted earliness-tardiness
objective function, where the due date di equals the old (now “infeasible”)
completion time of activity i.
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A half-line `(S, z) in Rn+2
≥0 passing through point S is said to have binary

direction if `(S, z) = S + Rz for some z ∈ {0, 1}n+2. Function f is called
binary-monotone if f is monotone (that is, either nondecreasing or nonin-
creasing) on each half-line in Rn+2

≥0 with binary direction. It can be shown
that there is always a local extreme point of S that represents an optimal
solution to (P) with binary-monotone f (cf. Neumann et al. 2000). An ex-
ample of a binary-monotone function is the (negative) net present value of
a project. Let β be the discount factor per unit time where 0 < β ≤ 1.
Moreover, let cF

i ∈ Z be the cash flow associated with activity i, which is
supposed to occur at the completion time Si + pi of activity i and may be
positive (i.e. a payment received) or negative (i.e. a disbursement incurred).
Then

∑
i∈V cF

i βSi+pi is the net present value of the project in question,
which is to be maximized.

Finally, we consider the objective function of the resource-investment
problem, where the cost of purchasing resources is to be minimized, and of
resource-levelling problems, where some measure of the variation of resource
utilization over time is to be minimized.

Function f is termed locally regular if f is regular on each equal-
order set S=

T (O(S)), S ∈ S. From this it follows that there is always a
minimal point S of some schedule polytope ST (O(S)) which is a min-
imizer of a locally regular function f on S (cf. Neumann et al. 2001,
Sect. 3.3). For example, the resource-investment objective function f given
by f(S) :=

∑
k∈R ck max0≤t≤d rk(S, t) is locally regular where ck ∈ Z≥0 is

the procurement cost per unit of resource k. Note that f is lower semicon-
tinuous but not continuous.

Recall that function f is said to be quasiconcave if f(λS + [1− λ]S′) ≥
min[f(S), f(S′)] for all λ ∈ [0, 1] and all S, S′ ∈ Rn+2

≥0 . This means that a
quasiconcave function attains its minimum on a line segment at one of the
two endpoints of that segment. Function f is called locally quasiconcave if
f is quasiconcave on each equal-order set S=

T (O(S)), S ∈ S. There is always
an extreme point S of some schedule polytope ST (O(S)) that represents an
optimal solution to scheduling problem (P) with locally quasiconcave f (cf.
Neumann et al. 2001, Sect. 3.3). Examples of locally quasiconcave functions
are the resource-levelling objective functions f given by the total squared
utilization cost f(S) :=

∑
k∈R ck

∫ d

0
r2
k(S, t) dt or the total overload cost

f(S) :=
∑

k∈R ck

∫ d

0
max[rk(S, t)− Yk, 0] dt where ck ∈ Z≥0 is a cost in-

curred per unit of resource k and per unit time and Yk ∈ Z≥0 is some
threshold for the usage of resource k. Further resource-levelling functions,
where resources that represent different kinds of manpower are considered
and changing the size of work force over time should be smoothed, can be
found in Neumann and Zimmermann (1999a) and Kimms (2001), Sect. 11.1.
Recently, renting resources instead of buying them has become more and
more important in practice. In Nübel (2001) and Neumann et al. (2001),
Sect. 3.6, a resource-renting problem has been discussed, whose objective
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function is the sum of fixed and variable renting costs and represents a
locally quasiconcave function, too.

5 Exact solution methods

5.1 Relaxation-based approach

For solving project scheduling problem (P) with regular, antiregular, linear,
convex, or binary-monotone objective functions f , a so-called relaxation-
based approach turns out to be expedient (cf. Brucker et al. 1999, De
Reyck et al. 1999, Neumann et al. 2000). If we omit the resource constraints
(4) from problem (P), the resulting resource relaxation has feasible region
ST instead of S. For regular, antiregular, linear, or binary-monotone func-
tions f , there is always a vertex of polytope ST which represents a minimizer
of f on ST . For convex functions f , each local minimizer of f on ST is a
global one as well. For regular or antiregular functions f , the earliest sched-
ule ES (i.e. the vector of earliest start times ESi of activities i ∈ V ) or latest
schedule LS (i.e. the vector of latest start times LSi of activities i ∈ V ),
respectively, is optimal. Note that ESi = d0i and LSi = −di0, where dij

is the longest path length from node i to node j in project network N .
For linear functions f , the resource relaxation of problem (P) is a linear
program whose dual represents a network flow problem (cf. Russell 1970).
For the net present value function, Kamburowski (1990), De Reyck (1998),
Zimmermann (2000), and Schwindt and Zimmermann (2001) have devised
a network simplex-like method, a recursive search procedure, and steep-
est descent approaches, respectively. Schwindt (2000) has proposed primal
and dual steepest descent algorithms for the weighted earliness-tardiness
function.

For regular objective function Cmax, exact methods of the branch-and-
bound type for the resource-constrained problem (P) have been offered by
Bartusch et al. (1988), De Reyck and Herroelen (1998a), Schwindt (1998),
Fest et al. (1999), and Dorndorf et al. (2000). Those methods can be adapted
to general regular and antiregular objective functions without any difficulty
(cf. De Reyck et al. 1999, Neumann et al. 2001, Sect. 2.10). Branch-and-
bound procedures for the net present value function have been developed
by De Reyck and Herroelen (1998b), Neumann and Zimmermann (2000b)
and for the weighted earliness-tardiness function by Schwindt (2000). For
the case of precedence constraints instead of general temporal constraints,
similar methods have been devised by Vanhoucke et al. (2001a,b) for the
net present value and weighted earliness-tardiness problems.

We briefly sketch the enumeration scheme of such a branch-and-
bound method for objective function Cmax, which has been devised by De
Reyck and Herroelen (1998a) and combines the relaxation-based enumera-
tion scheme of Bell and Park (1990) with the concept of minimal delaying
alternatives used by Demeulemeester and Herroelen (1992). A similar ap-
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proach has been proposed by Icmeli and Erengüç (1996) for the resource-
constrained net present value problem with precedence constraints.

Let S be an optimal solution to the resource relaxation. A so-called
resource conflict at a point in time t, that is∑

i∈F

rik > Rk for some k ∈ R and F ⊆ A(S, t)

can be resolved successively by introducing additional temporal constraints,
which delay certain activities from forbidden set F . If F is minimal with
respect to set inclusion, it is called a minimal forbidden set (cf. Bartusch
et al. 1988, Stork and Uetz 2001). A resource conflict at time t caused by
the execution of activities from A(S, t) can be resolved by introducing a
precedence constraint Sj ≥ Si + pi between two activities i and j, i 6= j,
from each minimal forbidden set F ⊆ A(S, t). An inclusion-minimal set
B which contains at least one element from each minimal forbidden set
F ⊆ A(S, t) is called a minimal delaying alternative (cf. Christofides et al.
1987, Demeulemeester and Herroelen 1992). A pair (i, B) where i ∈ F \ B
and B is a minimal delaying alternative is called a minimal delaying mode
for F . It can be shown that it is sufficient to enumerate all minimal delaying
modes to resolve a resource conflict (see De Reyck and Herroelen 1998a).

The basic idea of the enumeration scheme is as follows. We identify the
enumeration nodes with time-feasible strict orders O in V and the corre-
sponding search spaces P with order polytopes ST (O). Let Γ be the set
of feasible schedules to be enumerated and Ω be a set of strict orders O
in activity set V . We start with Γ = ∅ and Ω = {∅}, and O = ∅ repre-
sents the root node of the enumeration tree. At first, we remove O = ∅
from Ω and determine the earliest schedule S = minST (O) = minST , i.e.
the unique minimal point of search space ST (O). If S is feasible, we set
Γ := Γ ∪ {S}. Otherwise, there is a time t ≥ 0 such that active set A(S, t)
is forbidden, and we compute all minimal delaying modes (i, B) for A(S, t).
Then, we add the transitive hull O′ of each relation O∪{(i, j) | j ∈ B} to Ω
(and O′ becomes a child node of O in the enumeration tree) provided that
ST (O′) 6= ∅. After that, we again delete a strict order O from Ω, consider
the search space P = ST (O), determine the earliest schedule S = minP,
and reiterate the previous steps until all strict orders from Ω have been
investigated, i.e. Ω = ∅. If S 6= ∅, the resulting set Γ contains an optimal
schedule.

The approach by Bartusch et al. (1988) differs from the above scheme
in the forbidden sets considered in the course of the algorithm. Instead of
generating one forbidden set F = A(S, t) in each iteration, all minimal for-
bidden sets for which all activities can overlap in time are determined in
advance. At each level of the enumeration tree, one of those minimal forbid-
den sets is considered. For given minimal forbidden set F , the offsprings O′

of node O arise from branching over all pairs (i, j) of activities i, j ∈ F such
that for the transitive hull O′ of relation O ∪ {(i, j)}, search space ST (O′)
is nonempty.
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Next, we briefly discuss three alternative enumeration schemes. To re-
solve resource conflicts, Schwindt (1998) has used disjunctive precedence
constraints Sj ≥ mini∈F\{j}(Si + pi), where j ∈ F and F is a minimal
forbidden set. Instead of delaying a single activity j, again several activities
from a minimal delaying alternative B can be shifted at the same time.
Then we obtain disjunctive precedence constraints between activity sets
A := A(S, t) \B and B

min
j∈B

Sj ≥ min
i∈A

(Si + pi)

In literature, disjunctive precedence constraints are also referred to as
AND/OR precedence constraints or waiting conditions (cf. Möhring et al.
2000). They have been introduced by Igelmund and Radermacher (1983) in
the form of preselective strategies for resource-constrained project schedul-
ing with stochastic activity durations. The use of disjunctive precedence
constraints markedly reduces the number of enumeration nodes which have
to be considered. On the other hand, the introduction of disjunctive prece-
dence constraints leads to disconnected search spaces. Each search space P,
however, possesses a unique minimal point, and the problem of minimizing
the project duration on set P can be solved by a straightforward fixed-point
algorithm providing the minimal point of P in pseudo-polynomial time (cf.
Schwindt 1998).

For resolving resource conflicts, Fest et al. (1999) have replaced the dis-
junctive precedence constraints between sets A and B by dynamic release
dates

dmin
0j = min

i∈A
(Si + pi) for all j ∈ B

being equal to the earliest completion time of some activity i ∈ A with re-
spect to current schedule S. Dynamic release dates only temporarily estab-
lish a precedence relationship between sets A and B, and hence the resource
conflict may reappear later on. In comparison with disjunctive precedence
constraints, the main advantage of the latter approach is that the minimal
point of search space P can be calculated very efficiently in O(n) time.
Furthermore, the enumeration scheme admits a simple and effective domi-
nance criterion, which allows to weed out enumeration nodes by comparing
corresponding release date vectors.

Whereas the relaxation-based enumeration schemes mentioned thus far
are based on resolving resource conflicts, the approach by Dorndorf et al.
(2000) relies on binary decisions of scheduling a given activity j ∈ V at its
(current) earliest possible start time d0j or delaying j by introducing some
release date dmin

0j ≥ d0j +1. The size of the corresponding enumeration tree
can considerably be reduced by applying so-called constraint propagation
techniques, which are used to check whether certain start times can be
excluded from further consideration because they cannot lead to feasible,
active, or optimal schedules.
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Apart from the enumeration scheme, a branch-and-bound proce-
dure is characterized by the search strategy, preprocessing techniques, lower
bounds on the minimum objective function value, and dominance rules.

The search strategy determines that enumeration node from which
branching is performed next. Due to favorable memory requirements and
ease of implementation, the enumeration tree is generally traversed accord-
ing to a depth-first search. Alternatively, a scattered-search approach can
be used, where the enumeration tree is partitioned into a given number
of subtrees, which are generated simultaneously according to a depth-first
search each (cf. Klein and Scholl 2000).

Preprocessing refers to a phase between formulation and solution of a
problem, which may consist of adding inequalities, tightening bounds on
variables, or fixing variables. In project scheduling, sometimes additional
temporal constraints can be added to the underlying project network based
on the examination of resource conflicts induced by two or more activities.
The constraints added must be met by each optimal schedule and do not
represent alternative manners of resolving resource conflicts. For example,
a forbidden set F = {i, j} where dij > −pj can be broken up in advance
by precedence constraint Sj ≥ Si + pi because the temporal constraints
prevent activity j from being completed before the start of activity i. Pre-
processing can be used in the root of the enumeration tree as well as in each
enumeration node to dynamically reduce its search space P (in the latter
case, preprocessing is referred to as immediate selection or constraint prop-
agation). Preprocessing and constraint propagation techniques for project
scheduling have been discussed by Brucker et al. (1998), Baptiste et al.
(1999), and Dorndorf et al. (1999).

Obviously, the solution of the resource relaxation provides a lower bound
on the minimum objective function value. Tighter lower bounds based on
interval capacities or disjunctive activities (i.e. activities which cannot be
performed simultaneously) can be found in Heilmann and Schwindt (1997),
De Reyck and Herroelen (1998a), Klein and Scholl (1999), and Neumann
et al. (2001), Sect. 2.5. Lower bounds based on interval capacities result
from comparing the minimum resource requirement and the resource sup-
ply in certain time intervals. Disjunctive activities can be used to refine
the resource relaxation with precedence constraints in the course of con-
straint propagation. The corresponding lower bound equals the minimum
objective function value on the reduced search space. For objective func-
tion Cmax, lower bounds LB can be computed in a destructive manner by
showing that there is no feasible schedule S with Sn+1 < LB . Destructive
lower bounds again apply constraint propagation techniques to generate
constraints which contradict hypothetical project deadlines. Further lower
bounds on the minimum project duration based on Lagrange relaxation
and column generation techniques have been proposed by Möhring et al.
(1999) and Brucker and Knust (2000), respectively. Due to their consider-
able computational requirements, these bounds are primarily dedicated to
the performance analysis of heuristic solution procedures.
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Dominance rules allow to prune certain nodes of the enumeration tree
by means of dominance considerations. In the course of the relaxation-based
branch-and-bound procedures, different versions of a subset-dominance rule
are used. The subset dominance rule compares the current search space P
with search spaces P ′ which have been generated on a different traversal
path in the enumeration tree. Clearly, the current enumeration node is re-
dundant and thus can be deleted if P ⊆ P ′. Further dominance rules, which
depend on the specific enumeration scheme used, can be found in De Reyck
and Herroelen (1998a), Fest et al. (1999), Dorndorf et al. (2000), and Franck
et al. (2001a).

5.2 Tree-based approach

For locally regular or locally quasiconcave objective functions f , the re-
source relaxation of (P) is generally already NP-hard (cf. Neumann et al.
2001, Sect. 3.4). Thus, the relaxation-based approach is not recommended.
Instead, Neumann and Zimmermann (1999a, 2000a) and Neumann et al.
(2000) have proposed a so-called tree-based approach, whose basic idea
is as follows. As mentioned in Section 4, minimal or extreme points (i.e.
vertices) of schedule polytopes represent candidates for optimal schedules.
A vertex S of schedule polytope ST (O(S)) can be represented by a spanning
tree G of schedule network N(O(S)) with arc set EG and arc weights δG

ij .
S is the unique solution to the system of n + 2 linear equations S0 = 0,
Sj − Si = δG

ij (〈i, j〉 ∈ EG).
To enumerate the vertices of all schedule polytopes ST (O(S)), we enu-

merate the corresponding spanning trees. These spanning trees are con-
structed by consecutively fixing start times of activities such that in each
step, a temporal constraint Sj − Si ≥ δij or a precedence constraint
Sj ≥ Si + pi becomes binding. In this way, we construct a sequence of
subtrees of some schedule network N(O(S)).

More precisely, let Γ be the set of time-feasible schedules to be enumer-
ated. Moreover, let set Ω contain the pair (C, SC) for each partial schedule
SC := (Si)i∈C (or equivalently, for each subtree with node set C) already
constructed. We start with Γ = ∅ and Ω = {C, SC} where C = {0} and
S0 = 0. In each iteration, we remove an arbitrary pair (C, SC) from Ω. If
C = V , we add S = SC to Γ . Otherwise, we extend the current partial
schedule SC as follows. For each j∗ ∈ V \ C, we determine the set Dj∗ of
tentative start times t ∈ [ESj∗ , LSj∗ ] for which there is an activity i ∈ C
such that

(i) t = Si + δij∗ , i.e., temporal constraint Sj∗ − Si ≥ δij∗ is binding, or
(ii) t = Si − δj∗i, i.e., temporal constraint Si − Sj∗ ≥ δj∗i is binding, or
(iii) t = Si + pi, i.e., precedence constraint Sj∗ ≥ Si + pi is binding, or
(iv) t = Si − pj∗ , i.e., precedence constraint Si ≥ Sj∗ + pj∗ is binding.

For each t ∈ Dj∗ , we then add the corresponding extended partial sched-
ule SC

′
with C′ = C ∪{j} and Sj = t to Ω. Next, we take a new pair (C, SC)
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from Ω and proceed in the same way until all partial schedules from Ω have
been investigated. For locally regular objective functions, there is always
an optimal schedule corresponding to a minimal point of some schedule
polytope. Such a schedule S can be represented by a spanning outtree of
schedule network N(O(S)) with root 0. Thus, we merely consider cases (i)
and (iii) when computing sets Dj∗ , which means that we only add arcs
〈i, j∗〉 with i ∈ C and j∗ ∈ V \ C to the current subtree.

Specific implementations of the tree-based approach for the resource in-
vestment problem, different resource levelling problems, and the resource
renting problem can be found in Nübel (2001), Neumann et al. (2001),
Sect. 3.6, and Zimmermann (2001), Sect. 5.3. Further enumeration schemes
for those problems have been presented by Möhring (1984), Nübel (1999),
and Neumann and Zimmermann (2000a). The procedure by Möhring (1984)
for the resource investment problem is based on algorithms for the recogni-
tion of so-called interval graphs and the orientation of their complements.
Nübel (1999) enumerates the possible alternatives of how to resolve fictitious
resource conflicts which arise from upper bounds on the maximum resource
demands. Lower and upper bounds for the case of precedence constraints in-
stead of general temporal constraints can be found in Kimms (2001), Ch. 12
and 13. Neumann and Zimmermann (2000a) have devised a time-window
based branch-and-bound procedure for the resource investment and differ-
ent resource levelling problems enumerating integral start times of activities.
Lower bounds for the latter problems have been proposed by Neumann and
Zimmermann (2000a) and Selle (2001).

Interestingly, for locally regular and locally quasiconcave objective func-
tions f , a branch-and-bound method for solving problem (P) generally runs
much faster than for the corresponding resource relaxation because due to
the resource constraints in the former problem, a much smaller number of
feasible schedules need to be enumerated. The schedules enumerated in the
course of the relaxation-based approach represent vertices of (large) order
polytopes ST (O) covering feasible region S. In contrast, the schedules enu-
merated by the tree-based approach represent the vertices of all schedule
polytopes ST (O(S)), S ∈ S. Hence, the number of schedules enumerated
by the tree-based approach is generally much larger than for the relaxation-
based approach.

6 Heuristic solution procedures

If the search for an optimal schedule in a branch-and-bound method is
terminated prematurely, we obtain heuristic methods, so-called truncated
branch-and-bound procedures. For example, we speak of a truncated
branch-and-bound algorithm A with performance guarantee ε > 0, if the
relative error of the objective function value for a feasible solution found by
A is at most ε. The branch-and-bound procedure for objective function Cmax

presented in Section 5 can easily be truncated to such an ε-approximate
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heuristic. Let LB(O) be the lower bound belonging to enumeration node
O and let UB be the objective function value of the best feasible solution
found so far or a corresponding initialization value. Then the set of strict
orders or nodes O in the enumeration tree we branch from is restricted to
strict orders O with LB(O) < UB/(1 + ε).

For large problem instances with hundreds of activities, the computation
of schedules with a relative error of at most ε may be too time-consuming. In
this case, we recommend the truncation of the branch-and-bound procedure
to a filtered beam search procedure, where the number of offsprings of an
enumeration node is limited by the beam width (cf. e.g., Morton and Pentico
1993, Sect. 6.3).

A variant of the enumeration scheme sketched in Section 5 has been used
by Cesta et al. (2002) for a multi-pass heuristic. Instead of minimal delaying
modes (i, B), single pairs (i, j) are considered such that the addition of
(i, j) to strict order O prevents the simultaneous execution of all activities
from some selected minimal forbidden set F ⊆ A(S, t). The addition of
pairs (i, j) to O is repeated until either ST (O) = ∅ or the earliest schedule
S = minST (O) is feasible.

Heuristic methods for problem (P) that schedule the activities succes-
sively according to certain priority rules provide feasible solutions gen-
erally much faster than truncated branch-and-bound procedures. Such
priority-rule methods have been proposed by Neumann and Zhan (1995),
Brinkmann and Neumann (1996), Neumann and Zimmermann (1999a,b,
2000a), Franck et al. (2001a), Selle and Zimmermann (2001), and Zim-
mermann (2001), Ch. 3. One iteration of such a priority-rule method is in
principle as follows:

(i) Among the activities not yet scheduled, one activity, say i∗, is se-
lected by applying some priority rule. Of course, for different objec-
tive functions, different priority rules have turned out to be expedient
(cf. Neumann et al. 2001, Sect. 3.7).

(ii) For activity i∗ selected, a start time Si∗ is computed such that all
temporal and resource constraints are satisfied. Si∗ is generally chosen
in a way that the so-called additional-cost function (representing the
increase in the objective function value arising when activity i∗ is
scheduled at time Si∗) is minimized on an appropriate decision set Di∗

of tentative start times for i∗. Set Di∗ depends on the type of objective
function and the activities already scheduled, and its cardinality is
linear in n (for details we refer to Neumann and Zimmermann 1999a).

In step (ii) it may happen that for a selected activity i∗, there does
not exist any start time Si∗ complying with the temporal and resource
constraints. In this case, some of the activities already scheduled have to
be shifted such that activity i∗ can be scheduled observing all temporal
and resource constraints. Such unscheduling procedures have been used by
Neumann and Zimmermann (2000a), Selle and Zimmermann (2000), and
Franck et al. (2001a).
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A priority-rule method determines at most one feasible schedule S. If
the deviation of the corresponding objective function value from a lower
bound on the minimum objective function value is too large, schedule-
improvement procedures can be used to find “better” feasible sched-
ules. Schedule-improvement procedures belong to the class of local search
algorithms, which start with one or several initial solutions and iteratively
generate and evaluate neighboring solutions. For an introduction to local
search algorithms, we refer to Aarts and Lenstra (1997) and Michalewicz
and Fogel (1999). Neighbors S′ of a schedule S are obtained by applying
some neighborhood operators to appropriate representations of S. We briefly
sketch two neighborhood operators, which have been proposed by Neumann
et al. (2002) for (approximately) solving problem (P).

At first, we consider the case of regular, antiregular, linear, binary-
monotone, or convex objective functions f . Recall that for the latter ob-
jective functions, a minimizer of f on a nonempty order polytope ST (O)
can be determined efficiently and thus the relaxation-based approach can
be used (see Section 5).

Let tr(ρ) be the transitive hull of relation ρ and cr(O) be the cover-
ing relation of strict order O, i.e. the inclusion-minimal relation ρ with
tr(ρ) = O. The set of solutions Σ consists of all time-feasible strict orders
O in activity set V for which removing some pair (i, j) from cr(O) leads to
a resource-infeasible minimizer of f on the new search space. The schedule
S(O) belonging to time-feasible strict order O ∈ Σ is given by a minimizer
of f on ST (O). The neighborhood N (O) of strict order O is defined on the
basis of deleting or adding appropriate pairs of activities from or to covering
relation cr(O). We distinguish between two cases:

(i) If minimizer S(O) is feasible, then for each pair (i, j) ∈ cr(O), reduced
strict order O′ := tr(cr(O) \ {(i, j)}) is a neighbor of O.

(ii) If schedule S(O) is not resource-feasible, we determine the earliest
point in time t with rk(S, t) > Rk for some k ∈ R. For g, h ∈ A(S, t),
expanded strict order O′ := tr(O ∪ {(g, h)}) is a neighbor of O pro-
vided that ST (O′) 6= ∅.

Next, we consider problem (P) with locally regular or locally quasicon-
cave objective functions f . As stated in Section 4, for such a function f
there is always a minimizer of f on some schedule polytope ST (O(S)) rep-
resenting a minimal point or vertex of ST (O(S)), respectively. Moreover,
each minimal point or vertex of ST (O(S)) can be represented by a span-
ning outtree rooted at node 0 or a spanning tree, respectively, of schedule
network N(O(S)).

The rationale for a neighborhood function N on the solution set Σ of
spanning trees G of schedule networks N(O(S)) is as follows. For two adja-
cent vertices of a nonempty schedule polytope, there are two corresponding
spanning trees which differ in exactly one arc. Now let G = 〈V,EG〉 be a
spanning tree of N(O(S)) representing some vertex of schedule polytope
ST (O(S)). A neighbor G′ in the neighborhood N (G) of G is determined in
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two steps. First, we delete an arc 〈i, j〉 from G and shift the resulting subtree
T which does not contain node 0 until a temporal or precedence constraint
corresponding to some arc 〈g, h〉 becomes binding. Second, we add arc 〈g, h〉
and obtain spanning tree G′. For the case of outtrees, we only consider arcs
〈g, h〉 = 〈g, j〉 with terminal node j. This ensures that spanning outtrees G
are transformed into spanning outtrees G′.

A tabu search procedure based on the above neighborhood functions has
been devised in Neumann et al. (2001), Sect. 3.8. A different tabu search
procedure for problem (P) using a start time vector representation of sched-
ules has been proposed by Neumann and Zimmermann (2000a). For problem
(P) with regular objective function Cmax, a genetic algorithm and a tabu
search procedure based on a priority-list representation of schedules can be
found in Franck et al. (2001a). For problem (P) with net present value ob-
jective function, a tabu search method where the set of solutions contains all
integral start time vectors between the earliest and latest schedule has been
offered by Icmeli and Erengüç (1994). A comprehensive overview on heuris-
tic solution procedures for the case of precedence constraints and specific
objective function Cmax can be found in Hartmann and Kolisch (2000).

Finally, we summarize the results of an experimental performance
analysis for the solution methods discussed in Sections 5 and 6 (for details
we refer to Dorndorf et al. 2000, Franck et al. 2001a, and Zimmermann
2001, Sect. 4.4 and 5.4).

Different objective functions behave quite differently as far as compu-
tational effort and accuracy of the solutions obtained by the individual
methods are concerned. In a sense, objective function Cmax is the easiest
to handle, and locally quasiconcave functions are the hardest. The branch-
and-bound methods using the relaxation-based approach generally work
well for projects with up to about 100 activities. Of course, there are also
hard “pathological” instances with 50 activities that cannot be solved to
optimality within a few minutes of computation time. Among the exact so-
lution methods for objective function Cmax, the algorithm by Dorndorf et al.
(2000) has shown the best performance. Branch-and-bound procedures de-
rived from the tree-based approach can efficiently be used for small instances
with about 30 activities. Tree-based local search methods, however, have
been applied to projects with up to 500 activities (see Zimmermann 2001,
Sect. 5.4). Truncated branch-and-bound procedures are recommended when
dealing with medium-sized projects with at most 200 activities. Priority-rule
methods are the fastest algorithms and have been used for large projects
containing up to 1000 activities (see Franck et al. 2001a). Notice, however,
that priority-rule techniques sometimes do not provide a feasible schedule
although there is one. Schedule-improvement procedures like tabu search
or genetic algorithms lead to more accurate feasible solutions but are more
time-consuming.
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7 Expansions of the basic project scheduling problem

In this section we consider several expansions of the basic project scheduling
model (P) introduced in Section 2, which are needed when coping with the
applications of project scheduling to be discussed in Section 8. At first we
deal with break calendars, which specify time intervals during which some
renewable resources cannot be used. In that case, it is often necessary to
relax the requirement that activities must not be interrupted when being in
progress. Instead, we assume that the execution of certain activities can be
suspended during breaks, whereas other activities must not be interrupted.
After that, we are concerned with cumulative resources, which are depleted
and replenished over time. A cumulative resource can be regarded as the
inventory level in some storage facility of finite capacity. The inventory level
is bounded from below by some safety stock and from above by the capac-
ity of the storage facility. Next, we treat the case of sequence-dependent
changeover times, where resource units have to be reconfigured between the
processing of two consecutive activities and the time needed for changeover
may depend on both the preceding and following activities. Finally, we
consider multi-mode project scheduling problems, where activities may be
performed in alternative execution modes, which differ in durations and re-
source requirements. The execution modes of an activity reflect tradeoffs
between the time and resource demands.

7.1 Calendarization

When scheduling real-life projects, one often has to take into account breaks
during which renewable resources are not available. Breaks may arise from
weekends, holidays, or scheduled maintenance times for machines. They
can be represented by break calendars, i.e. right-continuous step functions
b : [0, d] → {0, 1}, where b(t) = 0 precisely if time t falls into a break,
and b(t) = 1, otherwise.

∫ t′

t
b(τ)dτ with t ≤ t′ is the total working time

in interval [t, t′[. Scheduling the activities of a project subject to break
calendars is termed calendarization.

In practice, different resources generally have different calendars. For
what follows, we assign an activity calendar bi to each activity i ∈ V by
putting bi(t) to be equal to zero if there is some resource used by activity i
that is not available at time t, and equal to one, otherwise. The execution
of an activity may be suspended at the beginning of a break. In that case,
it has to be resumed at the end of the break. Let V bi denote the set of those
(break-)interruptible activities. Given start time Si, the completion time of
activity i ∈ V bi is

Ci(Si) = min{t ≥ Si + pi |
∫ t

Si

bi(τ)dτ = pi} (5)
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V ni := V \V bi is the set of all activities which must not be interrupted. For
activities i ∈ V ni we have constraints

bi(t) = 1 (Si ≤ t < Si + pi) (6)

Minimum and maximum time lags may depend on calendars, too. For
example, due to (5) a precedence constraint Sj ≥ Ci(Si) between an inter-
ruptible activity i and some activity j depends on the activity calendar of
activity i. That is why we associate a time lag calendar bij with each arc
〈i, j〉 ∈ E of project network N . The temporal constraints then read∫ Sj

Si

bij(τ)dτ ≥ δij (〈i, j〉 ∈ E) (7)

If δij ≥ 0, the total working time
∫ Sj

Si
bij(τ)dτ in interval [Si, Sj [ must be

greater than or equal to dmin
ij = δij . In case of δij < 0, the total working

time
∫ Si

Sj
bij(τ)dτ = −

∫ Sj

Si
bij(τ)dτ in interval [Sj , Si[ must not be greater

than dmax
ji = −δij .

A schedule satisfying the calendar constraints (6) and (7) is called
calendar-feasible. Franck et al. (2001b) have devised polynomial-time label-
correcting algorithms for finding the earliest and latest calendar-feasible
schedules ES and LS. A preliminary version of those algorithms can be
found in Zhan (1992). The principal idea of the procedure for computing
schedule ES is to start with some schedule S ≤ ES and to iteratively delay
the activities until all calendar constraints are satisfied. Each time the ear-
liest start time of some activity i is increased, the calendar constraints are
reexamined for all direct successors j of node i in project network N . Lat-
est schedule LS can be determined similarly by starting from some sched-
ule S ≥ LS and successively advancing the activities. It can be shown that
schedules ES and LS coincide with the unique minimal and maximal points,
respectively, of the set of all calendar-feasible schedules (see Franck 1999,
Sect. 3.2).

7.2 Cumulative resources

The availability of renewable resources like manpower or machinery is inde-
pendent of their previous utilization. Resources whose availability at a given
time t results from all (positive and negative) requirements that have oc-
curred by time t are called cumulative resources or storage resources. Such a
cumulative resource k can be regarded as the inventory level in some storage
facility which is depleted and replenished over time. The inventory level in
resource k is bounded from below by some safety stock Rk ∈ Z≥0 and from
above by the capacity Rk ∈ Z≥0 of the storage facility.

Let Rγ be the set of all cumulative resources under consideration and let
rik ∈ Z denote the (storage) demand of activity i for resource k. If rik > 0,
activity i replenishes resource k by rik units, and if rik < 0, resource k is
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depleted by −rik units. We assume that resources k ∈ Rγ are depleted at
start times and replenished at completion times of activities. To simplify
writing, we also suppose that an activity cannot deplete and replenish one
and the same cumulative resource. r0k corresponds to the initial stock of
resource k.

Now let V −
k := {i ∈ V | rik < 0} and V +

k := {i ∈ V | rik > 0} denote
the sets of all activities i ∈ V depleting and replenishing, respectively, re-
source k. Then Ak(S, t) := {i ∈ V −

k | Si ≤ t} ∪ {i ∈ V +
k | Si + pi ≤ t} is the

active set of all activities that determine the inventory level

rk(S, t) :=
∑

i∈Ak(S,t)

rik

in resource k at time t.
The inventory constraints, which say that at any point in time t ∈ [0, d]

the inventory level in each resource k must be between the safety stock and
the storage capacity, can be written as

Rk ≤ rk(S, t) ≤ Rk (k ∈ Rγ , 0 ≤ t ≤ d) (8)

A schedule S which satisfies the inventory constraints is termed inventory-
feasible.

A renewable resource k can be interpreted as a cumulative resource with
zero safety stock. At the project beginning, the inventory is replenished by
r0k = Rk units. The start of an activity i ∈ V depletes the inventory by
rik units, which are returned to k at the completion of i. Clearly, with the
renewable resources modelled in that way, a schedule is resource-feasible
precisely if it is inventory-feasible. That is the reason why project schedul-
ing problems with cumulative resources represent a generalization of basic
project scheduling problem (P) with renewable resources.

The concept of cumulative resources has been introduced by Schwindt
(1998). Neumann and Schwindt (1999) have devised a branch-and-bound
algorithm for minimizing the duration of a project subject to temporal con-
straints (3) and inventory constraints (8). An alternative branch-and-bound
procedure for this problem has been developed by Laborie (2001). Carlier
and Rinnooy Kan (1982) have considered polynomial-time algorithms for
the special case where all replenishments occur at predetermined points in
time.

For given schedule S, we distinguish between two types of resource con-
flicts and forbidden sets. We speak of an inventory shortage at point in
time t if∑
i∈F

rik < Rk for some k ∈ Rγ and Ak(S, t) \ F ⊆ V −
k , F \ Ak(S, t) ⊆ V +

k

and set F is termed a shortage set. An inventory shortage can be resolved
by introducing precedence constraints Sj ≥ Si + pi between replenishing
activities i outside set F and depleting activities j from set F . In other
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words, we add a minimum time lag dmin
ij = pi between the start of activities

i and j. Symmetrically, the conflict∑
i∈F

rik > Rk for some k ∈ Rγ and Ak(S, t) \ F ⊆ V +
k , F \ Ak(S, t) ⊆ V −

k

is called an inventory excess and F is referred to as a surplus set. For
resolving an inventory excess, we delay the completion of some replenishing
activities j from set F up to the start of some depleting activities i outside
set F , i.e., Sj + pj ≥ Si. This means that we introduce maximum time
lags dmax

ji = pj between the start of activities i and j. Analogously to the
case of renewable resources, an inclusion-minimal set B ⊆ F with Rk ≤∑

i∈F\B rik ≤ Rk is called a minimal delaying alternative.
In the relaxation-based algorithm by Neumann and Schwindt (1999),

at each iteration a disjunctive precedence constraint of type minj∈B Sj ≥
mini∈A(Si + pi) or minj∈B(Sj + pj) ≥ mini∈A Si is introduced between set
A = V +

k \ Ak(S, t) or A = V −
k \ Ak(S, t) and a minimal delaying alterna-

tive B ⊆ Ak(S, t). The branching is performed over the set of all minimal
delaying alternatives B for a given forbidden active set F = Ak(S, t). The
enumeration scheme by Laborie (2001) is based on investigating, for appro-
priate pairs (i, j) of replenishing and depleting activities i and j, the two
alternatives whether or not j is started before the completion of i.

7.3 Sequence-dependent changeover times

When coping with projects whose activities are distributed over different
locations sharing common renewable resources, changeover times for the
transportation of resource units have to be taken into account. Changeover
times also arise when resource units have to be cleaned or teared down and
reinstalled between the execution of two consecutive activities. During the
changeover, those resource units are not available for processing activities.
The changeover times are generally sequence-dependent, which means that
the time needed for changing over a resource unit may depend on both the
activity preceding and the activity following the changeover.

Let ϑk
ij ∈ Z≥0 denote the changeover time between activities i and j on

resource k, where we assume that the weak triangle inequality

ϑk
hi + pi + ϑk

ij ≥ ϑk
hj

is satisfied for all activities h, i, j ∈ V and all resources k ∈ R. Given a
schedule S and a resource k, we have to find an assignment of rik resource
units to each activity i ∈ V of the project such that no two activities share
common resource units if, inclusive the changeover time, they overlap in
time. We say that schedule S is changeover-feasible if such an assignment
exists. Clearly, any changeover-feasible schedule is resource-feasible as well.

In what follows, we outline the basic principle of a branch-and-bound
procedure by Neumann et al. (2001), Sect. 2.13, for finding a time- and
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changeover-feasible schedule with minimum project duration. An alternative
procedure for the case of single-unit resource requirements rik ∈ {0, 1} for
all i ∈ V and all k ∈ R has been offered by Trautmann (2001), Sect. 3.3.
Let S be some time-feasible schedule and let

Ok(S) := {(i, j) ∈ V × V | i 6= j, Sj ≥ Si + pi + ϑk
ij}

be the schedule-induced strict order in set V containing all pairs (i, j) such
that the time lag between the completion of activity i and the start of
activity j is sufficiently large for a changeover from i to j on resource k.
A ⊆ V is called an antichain in strict order Ok(S) if (i, j) /∈ Ok(S) and
(j, i) /∈ Ok(S) for all i, j ∈ A. It follows from the definition of strict order
Ok(S) that activities from an antichain A in Ok(S) overlap in time and thus
must be executed on different resource units each.

The changeover-feasibility for a given schedule S can be tested by com-
puting for each resource k ∈ R a maximum-weight antichain Ak(S) in
strict order Ok(S), where the weights of activities i ∈ V correspond to the
resource requirements rik. It is well-known that such a maximum-weight an-
tichain can be computed efficiently via network flow techniques by finding
a maximum-weight stable set in the transitively orientable comparability
graph of Ok(S) (see, e.g., Kaerkes and Leipholz 1977). S is changeover-
feasible exactly if ∑

i∈Ak(S)

rik ≤ Rk (k ∈ R) (9)

At each iteration of the branch-and-bound algorithm, a maximum-weight
antichain Ak(S) in the schedule-induced strict order Ok(S) belonging to
current schedule S is determined for each resource k. If for some k ∈ R
antichain Ak(S) is a forbidden set, the resource conflict is resolved by intro-
ducing a disjunctive precedence constraint minj∈B Sj ≥ mini∈A(Si+pi+ϑk

ij)
between a set A ⊂ Ak(S) and a corresponding minimal delaying alterna-
tive B for Ak(S), where A = Ak(S) \B.

7.4 Multi-mode project scheduling

In many applications of project scheduling, certain activities may be carried
out in alternative execution modes, which differ in durations and resource
requirements. For example, the duration of an activity may be shortened
by increasing the number of resource units allotted (time-resource tradeoff)
or some resources used may be replaced by other ones (resource-resource
tradeoff). Multi-mode project scheduling problems often include nonrenew-
able resources like a budget, which correspond to cumulative resources that
are depleted but never replenished.

Let Rν be the set of all nonrenewable resources, R be again the set of
renewable resources, and Rk ∈ N be the availability of k ∈ R ∪ Rν . For
each activity i ∈ V , a finite set Mi of execution modes mi with associ-
ated requirements rikmi ∈ Z≥0 for renewable or nonrenewable resources
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k ∈ R ∪Rν and durations pimi
is given. We assume that minimum and

maximum time lags dmin
ij and dmax

ij depend on the modes mi and mj in
which activities i and j are performed. This means that arcs 〈i, j〉 ∈ E are
now weighted by matrices δij = (δimijmj

)mi∈Mi,mj∈Mj
.

A binary vector x = (ximi
)i∈V,mi∈Mi

satisfying the mode assignment
constraints ∑

mi∈Mi

ximi = 1 (i ∈ V )

is called a (full) mode assignment. Each mode assignment corresponds to one
single-mode project scheduling problem with the respective resource require-
ments rik(x) :=

∑
mi∈Mi

rikmiximi , durations pi(x) :=
∑

mi∈Mi
pimiximi ,

and arc weights δij(x) :=
∑

mi∈Mi

∑
mj∈Mj

δimijmj
ximi

xjmj
. We say that

mode assignment x is feasible if first,∑
i∈V

rik(x) ≤ Rk (k ∈ Rν)

and second, the project network N(x) with arc weights δij(x) (〈i, j〉 ∈ E)
does not contain any cycle of positive length. A schedule S is termed feasible
with respect to mode assignment x if the temporal and renewable-resource
constraints are satisfied, i.e.,

Sj − Si ≥ δij(x) (〈i, j〉 ∈ E)

and
rk(S, x, t) ≤ Rk (k ∈ R)

where rk(S, x, t) :=
∑

i∈A(S,x,t) rik(x) is the requirement for resource k ∈ R
and A(S, x, t) := {i ∈ V | Si ≤ t < Si + pi(x)} is the active set at time t
given schedule S and mode assignment x. A multi-mode project scheduling
problem consists of finding a schedule-assignment pair (S, x) such that x
is a feasible mode assignment, S is a schedule feasible with respect to x,
and some objective function f is minimized. The first subproblem of finding
a feasible mode assignment x is called the mode assignment problem, and
the second subproblem coincides with the single-mode project scheduling
problem belonging to mode assignment x.

Three different approaches to solving the multi-mode project duration
problem have been proposed in literature. The tabu search procedure by De
Reyck and Herroelen (1999) performs a local search in the set of possible
mode assignments. For given mode assignment x, the resulting single-mode
problem is then solved by the branch-and-bound algorithm of De Reyck
and Herroelen (1998a). Franck (1999), Sect. 7.2, has adapted the priority-
rule method for the single-mode case from Section 6 to the case of multiple
execution modes. At each iteration, the activity to be scheduled is chosen
on the basis of a first priority rule. A second priority rule provides the ex-
ecution mode for the selected activity. A streamlined multi-pass version of
this procedure has been presented by Heilmann (2001). The basic princi-
ple of the branch-and-bound procedure by Heilmann (2002) is to consider
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single-mode problems arising from mode relaxations, which belong to par-
tial mode assignments x where only the unavoidable resource requirements,
durations, and time lags occurring in all selectable execution modes are
taken into account. The mode relaxations are stepwise refined by iteratively
assigning execution modes to activities and thus transforming the partial
mode assignments x into a full mode assignment x.

Brucker and Knust (2000) have described a destructive lower bound,
which is based on falsifying hypothetical project deadlines d′ ≤ d. For a
given deadline d′, they construct a linear-programming relaxation of the
problem. Using column-generation techniques, it is then determined whether
or not the linear program is solvable. In the latter case, deadline d′ has been
disproved and d′ + 1 thus represents be a lower bound on the minimum
project duration.

A special case of the multi-mode project duration problem has been
studied by Demeulemeester et al. (2000), where a branch-and-bound algo-
rithm for the discrete time-resource tradeoff problem has been offered. For
each real activity, a work content for a single renewable resource is speci-
fied. The alternative execution modes arise from all undominated integral
duration-requirement combinations for which the product of duration and
requirement is greater than or equal to the given work content.

8 Applications

In this section, we briefly discuss applications of resource-constrained
project scheduling to make-to-order production in manufacturing industry,
batch scheduling in process industries, and investment projects.

8.1 Make-to-order production in manufacturing

If all products are manufactured in response to firm customer orders, that
is, no inventories are built up for future sale, we speak of make-to-order
production. In addition to given customers orders, prescribed delivery dates
for these orders have to be met. The execution of a customer order, which
may contain several final products, can be viewed as a project to be per-
formed. Manufacturing the gross requirement for one product is considered
a job, and the processing of a job on a machine represents an operation or
activity. We then want to find a production schedule which

(i) minimizes the makespan or project duration,
(ii) satisfies the primary requirement for each final product,
(iii) complies with the limited capacity of machines,
(iv) observes the delivery dates of customer orders, and
(v) allows for overlapping of operations, without interrupting any opera-

tion.
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Condition (v) means that the transportation lot size of some product
from a machine to a different machine may be smaller than the production
lot size (i.e. the gross requirement) for that part, that is, some units of the
part may be transferred from the first to the second machine before the
processing of the whole production lot on the first machine is completed.
Such an overlapping of operations can reduce the makespan substantially.

The production scheduling problem sketched represents a problem of
type (P), where condition (i) says that the objection function is the
makespan Cmax. In general, each job has to be processed on several machine
types (which correspond to renewable resources) in a prescribed order given
by a so-called process plan. In Neumann and Schwindt (1997) and Neu-
mann et al. (2001), Sect. 2.9, it is shown that conditions (ii) and (iii) lead
to resource constraints (4) and conditions (iv) and (v) result in minimum
and maximum time lags between operations, that is, temporal constraints.

8.2 Batch scheduling in process industries

In this subsection we are concerned with the scheduling of batch plants in
process industries, where similarly to the case of manufacturing dealt with in
Subsection 8.1, final products arise from several successive transformations
of intermediate products. In process industries, the operations correspond
to chemical reactions in processing units such as reactors, heaters, or filters.
Each operation can be carried out on one out of several alternative pro-
cessing units, which may differ in speed. The processing units are operated
by workers. Each operation may consume several input products and may
produce several output products. Perishable intermediate products must be
consumed within a prescribed shelf life time, which may be equal to zero.
In the latter case, the product cannot be stocked. In addition, the storable
intermediate products must be buffered in dedicated storage facilities like
tanks or silos. Further peculiarities encountered in process industries are
sequence-dependent cleaning times on processing units and large process-
ing times, which may necessitate the explicit consideration of breaks like
weekends.

The batch scheduling problem consists of allocating processing units, in-
termediate products, and storage space over time to the execution of the
operations such that

(i) the makespan is minimized and is less than or equal to the planning
horizon,

(ii) each operation is carried out on some processing unit,
(iii) each processing unit performs no more than one operation at a time,
(iv) the time lag between two consecutive operations on a processing unit

is sufficiently large for cleaning,
(v) there are sufficiently many workers available to operate the processing

units,
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(vi) the inventories of intermediate products do neither fall below the
safety stocks nor exceed the storage space available,

(vii) perishable products are consumed within the prescribed shelf life
times, and

(viii) operations which require permanent supervision and control are not
processed during a weekend, and no operation is executed on a pro-
cessing unit during a maintenance time.

In what follows we sketch a resource-constrained project scheduling
model for the batch scheduling problem, which has been discussed in
Schwindt and Trautmann (2000). Analogously to the case of make-to-order
production, the execution of all operations can be viewed as a project, where
the makespan from condition (i) coincides with the project duration and
the project deadline d is chosen to be equal to the planning horizon. For
each operation we have one real activity i ∈ V .

We combine identical processing units to form a pool, which is mod-
elled as a renewable resource k. Processing units are identical if they can
execute the same operations with the same processing and cleaning times.
If operation i ∈ V can be executed on a processing unit of resource k,
we introduce a corresponding execution mode mi ∈ Mi for activity i with
rikmi

= 1. The duration pimi
equals the processing time of operation i

on a processing unit of resource k. Condition (ii) then corresponds to the
mode assignment constraints, and condition (iii) means that the capacity
Rk of resource k coincides with the number of processing units in the pool.
The cleanings of processing units from condition (iv) represent sequence-
dependent changeovers between operations i and j on the respective unit
of renewable resource k. The changeover time ϑk

ij is set to be equal to the
cleaning time of the processing unit between the execution of operations i
and j.

Analogously to identical processing units, the workers form a pool cor-
responding to a renewable resource k. The requirements rikmi

for resource k
by modes mi ∈ Mi where i ∈ V equal the number of workers needed for
operating the processing unit belonging to mode mi. From condition (v)
it follows that the capacity Rk of resource k equals the number of workers
available.

The inventories in intermediate storage facilities can be modelled as
cumulative resources. We identify each intermediate product with one cu-
mulative resource k ∈ Rγ . If operation i produces the intermediate product,
rik equals the number of units produced, and if operation i consumes the
intermediate product, rik equals the negative number of units consumed.
According to condition (vi), Rk is equal to the safety stock of the product
and Rk coincides with the number of units that can be stocked. For per-
ishable products with zero shelf life time, we have Rk = Rk = 0. The case
of general shelf life times in condition (vii) can be modelled by introduc-
ing auxiliary activities and auxiliary cumulative resources (for details see
Schwindt and Trautmann 2002).
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Condition (viii) means that certain operations cannot be in progress
during breaks like weekends and maintenance times. We model breaks by
introducing an activity calendar bi for each such operation i, where bi(t) = 0
exactly if time t falls into an interval during which resources k ∈ R required
for processing i are not available. For the remaining activities i ∈ V , we
have bi(t) = 1 for all 0 ≤ t ≤ d.

Figure 4, which is taken from Neumann et al. (2001), Sect. 2.15, shows
the schedule-generation scheme of a relaxation-based branch-and-bound
procedure for the batch scheduling problem, which has been proposed by
Schwindt and Trautmann (2000).
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Fig. 4 Enumeration scheme for solving the batch scheduling problem

The algorithm is based on the above representation of the problem as
a multi-mode resource-constrained project scheduling problem with renew-
able and cumulative resources, sequence-dependent changeover times, and
activity calendars. The numbers in brackets refer to the sections covering
the respective issues. Starting with the partial mode assignment x = 0
where no execution mode has been selected for any activity, the proce-
dure calculates at each iteration the earliest calendar-feasible schedule S
for given partial assignment x. It is then checked whether schedule S is
resource-feasible, inventory-feasible, and changeover-feasible. If this is not
the case, new precedence constraints are introduced for resolving the re-
spective resource conflict and a new earliest schedule is computed for the
refined relaxation. Otherwise, schedule S is feasible with respect to partial
mode assignment x. If in the latter case there are still activities for which
no execution mode has been selected, we proceed by fixing an execution
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mode and return to the calculation of the next earliest schedule. Otherwise,
x is a full assignment, and thus schedule-assignment pair (S, x) is a feasible
solution to the batch scheduling problem.

Based on the procedure from Figure 4, for the first time, Schwindt and
Trautmann (2000) have provided a feasible solution to a benchmark problem
from industry submitted by Westenberger and Kallrath (1995). The latter
case study covers most of the features occurring in production scheduling
of batch plants.

8.3 Investment projects

Project managers are frequently confronted with the problem to decide
whether some given project should be performed or to select one out of
several mutually exclusive projects from a given portfolio. For the assess-
ment of investments, the net present value criterion is well-established in
research and practice. In classical preinvestment analysis, investments are
specified by a stream of payments, i.e. a series of payments with associated
payment times. Given a stream of payments and a proper discount rate,
the net present value of the project is obtained by summing up all pay-
ments discounted to the project beginning (cf. Figure 5a, where exogenous
parameters are written in italics).
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In case of investment projects, the payment times are no longer given in
advance but are subject to optimization. An investment project consists of a
set of activities each of which is associated with a payment. Moreover, there
are prescribed minimum and maximum time lags between the activities of
the project. Thus, the stream of payments results from maximizing the net
present value of the project subject to the temporal constraints that are
given by the minimum and maximum time lags (cf. Figure 5b). The latter
problem can be solved by the steepest ascent algorithm by Schwindt and
Zimmermann (2001) for the time-constrained net present value problem.

The formulation of this optimization problem presupposes the knowledge
of the required rate of return (i.e. the discount rate) for discounting the
payments and the specification of a maximum project duration (i.e. the
project deadline). When dealing with real investments in material goods
like in building industry, however, often neither the proper discount rate
to be applied is known with sufficient accuracy nor is the project deadline
fixed when the investment project must be evaluated. The required rate
of return is a theoretical quantity and can only be estimated. The project
deadline generally arises from negotiations between the investor performing
the project and his or her customers. The parametric optimization approach
by Schwindt and Zimmermann (2002) provides the maximum project net
present value C∗(α, d) of the project as a function of the discount rate α and
project deadline d chosen, where α = − lnβ (see Section 4). The resulting
net present value curve can then serve as a basis for the decision of the
investor, which depends on his individual risk preference (cf. Figure 5c). The
basic idea for computing the net present value curve is to cover its domain
by a finite number of sets M such that on each of those sets, function C∗

can be specified in closed form. Clearly, C∗ is a closed-form function on
connected subsets M of its domain where the binding temporal constraints
for optimal schedules S are the same for all (α, d) ∈M.

9 Conclusions

This paper has summarized recent research on resource-constrained project
scheduling with time windows. First, a basic project scheduling problem (P)
has been formulated, whose feasible region represents the union of finitely
many polytopes and where several different types of (mostly nonregular)
objective functions are of great importance in practice. Minimization of
the makespan, the maximum lateness, or the weighted earliness plus tardi-
ness, maximization of the net present value as well as resource-investment,
resource-levelling, and resource-renting problems are special cases of prob-
lem (P). Second, several different exact solution methods of the branch-
and-bound type and heuristic solution techniques such as truncated branch-
and-bound, priority-rule, and schedule-improvement procedures have been
sketched. Third, the following expansions of the basic problem (P) have been
briefly discussed: calendarization, so-called cumulative or storage resources,
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sequence-dependent changeover times between the execution of consecutive
activities, and multi-mode project scheduling. Finally, applications to make-
to-order production in manufacturing, batch scheduling in process industries
(e.g. chemical or pharmaceutical industries), and investment projects have
been considered. It has been shown how to model those practical problems
as project scheduling problems and how to solve them.

An important field of future research is new applications of resource-
constrained project scheduling, for example to short- and medium-term
planning in the area of supply chain management for different sectors of
industry. Such applications require the handling of a very large number of
activities or operations, say 5000 or more. Since the most efficient heuris-
tic solution procedures proposed recently can only deal with up to 1000
activities (cf. Section 6), new decomposition methods for larger problem
instances have to be developed which exploit the special problem structure.
Another area of future research important to practice is rescheduling (cf.
Section 4). Different realistic measures for the distance between (given in-
feasible and desired feasible) schedules have to be found in addition to the
weighted earliness-tardiness criterion, and fast rescheduling algorithms have
to be developed.
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