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1 Introduction 

In the process industries, final products arise from chemical and physi­
cal transformations of materials on processing units. In batch production 
mode, the total requirements for intermediate and final products are di­
vided into individual batches. To produce a batch, at first the input ma­
terials are loaded into a processing unit. Then a transformation process, 
called a task^ is performed, and finally the output products are unloaded 
from the processing unit. Typically, a plant is operated in batch produc­
tion mode when a large number of different products are processed on 
multi-purpose equipment. That is why we consider multi-purpose process­
ing units, which can operate different tasks. Symmetrically, a task may be 
executed on different processing units, in which case the duration of the 
task may depend on the processing unit used. For a practical example of a 
multi-purpose batch production plant we refer to the case study presented 
by Kallrath (2002). 

The minimum and maximum filling levels of a processing unit give rise 
to lower and upper bounds on the batch size. The input and the output 
proportions of the products consumed or produced, respectively, by a task 
are either fixed or variable within prescribed bounds. In general, storage 
facilities of limited capacity are available for stocking raw materials, inter­
mediates, and final products. Some products are perishable and must be 
consumed immediately after production. 

Between consecutive executions of different tasks on a processing unit, 
a changeover with sequence-dependent duration is necessary. Since the 
changeover times may be considerably large, the plant is generally con­
figured according to a subset of the required final products. Before pro­
cessing the next set of final products, the plant has to be reconfigured. 
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which requires the completion of all operations. In this context, the ob­
jective of makespan minimization is particularly important for ensuring a 
high resource utilization and short customer lead times. Given the primary 
requirements for final products, the short-term planning problem studied 
in this paper consists in computing a feasible production schedule with 
minimum makespan. 

Various solution methods for this problem are known from literature. 
Most of them follow a monolithic approach, which addresses the problem 
as a whole, starting from a mixed-integer linear programming formulation 
of the problem. In those models, the time horizon is divided into a given 
number of time periods, the period length being either fixed (time-indexed 
formulations, cf. e.g., Kondili et al. 1993) or variable (continuous-time for­
mulations, see e.g., lerapetritou and Floudas 1998 or Castro et al. 2001). 
The main disadvantage of the monolithic approaches is that the CPU time 
requirements for solving real-world problems tend to be prohibitively high 
(cf. Maravelias and Grossmann 2004). To overcome this diflSculty, different 
heuristics reducing the number of variables have been developed (cf. e.g., 
Blomer and Giinther 1998). 

A promising alternative approach is based on the decomposition of the 
short-term planning problem into interdependent subproblems. Such de­
composition methods have, for example, been proposed by Brucker and 
Hurink (2000), Neumann et al. (2002), and MaraveUas and Grossmann 
(2004). The solution approach developed in what follows is based on the 
hierarchical decomposition into a batching and a batch-scheduling problem 
presented in Neumann et al. (2002). Batching provides a set of batches 
for the intermediate and final products needed to satisfy the primary re­
quirements. Batch scheduling allocates the processing units, intermediates, 
and storage facilities over time to the processing of the batches arising 
from the batching step. The batching problem can be formulated as a 
mixed-integer nonlinear program (MINLP) of moderate size, which can be 
solved using standard mathematical programming software. For solving the 
batch-scheduling problem, a truncated branch-and-bound method and a 
priority-rule-based method have been developed by Neumann et al. (2002) 
and Schwindt and Trautmann (2004), respectively. Within a reasonable 
amount of CPU time, good feasible solutions to problem instances with up 
to 100 batches can be computed with both methods. Recently, Centner et 
al. (2004) have proposed a decomposition of the batch-scheduling problem 
which partitions the set of all batches into a sequence of subsets. The as­
signment of the batches to the individual subsets is determined stepwise 
by solving a binary linear program in each iteration. This decomposition 
method is able to approximatively solve batch-scheduling instances with 
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up to about 3000 batches in the space of several hours of CPU time (cf. 
Centner et al. 2004 and Centner 2005). 

In this paper, we present a cycUc scheduHng approach to the short-term 
planning problem. A preliminary version of this method can be found in 
Trautmann (2005). The basic idea consists in reducing the size of the 
batch-scheduling problem by computing a cyclic subschedule, which is exe­
cuted several times. The set of batches belonging to one cycle is determined 
by solving an MINLP, which also provides the number of cycles needed to 
satisfy the primary requirements {cyclic batching problem). To guarantee 
that the resulting batch-scheduling problem remains tractable, we impose 
an upper bound on the number of batches per cycle. The subschedule 
is then obtained by scheduling the batches on the processing units sub­
ject to material-availability and storage-capacity constraints {cyclic batch-
scheduling problem). The latter problem is solved using the priority-rule 
based method proposed in Schwindt and Trautmann (2004). 

The remainder of this paper is organized as follows. In Section 2 we 
formulate the cyclic batching problem as an MINLP and briefly discuss 
structural issues. Section 3 is devoted to the cyclic batch-scheduling prob­
lem and the generation of a complete production schedule by efficiently 
concatenating copies of the subschedule. In Section 4 we report on results 
of an experimental performance analysis. 

2 Cyclic Batching 

Let T be the set of all tasks and let ^r and £r be the batch size and the 
number of batches for task r G T. By 11" and II:;!" we denote the sets of 
input and output products, respectively, of task r G T. Ilr := I I " U n:;t 
is the set of all input and output products of task r , and II := UreT^r is 
the set of all products considered. In addition to /3r and Er, the (negative) 
proportions am < 0 of all input products n € II^ and the (positive) 
proportions â Tr > 0 of all output products n £ Il:j: have to be determined 
for all tasks r G T such that 

Y, a., = - J2 " - = 1 (^eT) (1) 
neut Tren-

Proportions Q̂ TT and batch sizes Pr have to be chosen within prescribed 
intervals [a^^.am] and [^^,'^ri i-^-, 

a^^ < a < am (r G T, TT G Ur) (2) 

§_^<P<A {reT) (3) 
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Let T~ and T j be the sets of all tasks consuming and producing, respec­
tively, product TT G n and let 11^ C 11 be the set of perishable products. 
Then equations 

arnPr = -OCr'^Pr' (TT G H ^ (T, T') G T / X T " ) (4) 

ensure that the amount of product TT G H^ produced by one batch of 
some task r G T;t" can immediately be consumed by any task r' G T~ 
consuming TT. 

By n* C n we denote the set of intermediates. In order to obtain a cyclic 
solution, which allows us to execute the same subschedule an arbitrary 
number of times, the amount of an intermediate TT produced within one 
cycle must be equal to the amount of TT consumed, i.e., 

Y, C^rnPrSr = 0 (TT G W) (5) 
r € T , 

Proportions am, batch sizes /3r, and the numbers of batches £r define 
the set of batches belonging to one cycle. The number of cycles needed 
is a decision variable i/ G Z>o whose value depends on the given primary 
requirements for final products. Let n-^ C 11 be the set of all final products 
and let QT^ be the primary requirement less the initial stock of product 
TT G n-^. The final inventory of product n then equals i^XlreT^^TriSr^r-
This amount must be sufficiently large to match the requirements QT^ for TT, 
i.e., 

1/ ^ arnfirSr > Q^ {T^ ^ H^) (6) 

In addition, the number of batches within one cycle must not exceed the 
prescribed upper bound e, i.e., 

r€T^ 

Finally, let pr be the mean processing time of task r on the alter­
native processing units. To minimize the workload to be scheduled in the 
batch-scheduling step, the objective function is chosen to be the total mean 
processing time I^XITGT^^^^* -̂ ^ ' ^^^J ^^^ cycUc batching problem reads 

(C-BP) { 

Minimize u YlreT Pr^r 
subject to (1) to (7) 

Er G Z>o ( r G T) 

i / G 
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For a given value of i/, problem (C-BP) can be transformed into a 
mixed-binary linear program with binary decision variables Off: {r GT^ JJL = 
! , . . . , £ ) being equal to one exactly \i£r > ^ and continuous decision vari­
ables ^^^ (r G T, TT G Hr, /i = 1 , . . . ,£) with ^^^ = a^Tr/Jr if 6>(f = 1 and 
ĵjf̂  = 0, otherwise (see Neumann et al. 2002 for details). Now suppose 

without loss of generality that max^ren/ PTT > 0- Due to i/ > 0 for any 
feasible solution to (C-BP), inequality (6) can be rewritten as 

7" EE^-<o (TrenO (8) 

Let (C-BP) denote the continuous relaxation of the reformulated batching 
problem with decision variables Off: and £,!f^. Since for each TT G H-̂  the left-
hand side of (8) is a convex function and because all remaining constraints 
of (C-BP) are linear, the feasible region of (C-BP) is a convex set. Moreover, 
the objective function ^'^^-eT^^ 5^I=i ^r ^f (C-BP) is increasing on the 
feasible region. 

3 Cyclic Batch-Scheduling and Concatenation 

In this section we explain our method for solving the batch-scheduling prob­
lem. In Subsections 3.1 and 3.2, where we closely follow the presentation of 
Schwindt and Trautmann (2004), we are concerned with the scheduling of 
the batches belonging to one cycle. In Subsection 3.3 we show how a com­
plete production schedule for the execution of the v cycles can be efficiently 
constructed from the cyclic subschedule. 

3.1 Statement of the Cyclic Batch-Scheduling Problem 

Recall that solving the batching problem has provided us with the set of 
batches belonging to one cycle. For what follows, the processing of a batch 
on a processing unit is called an operation. Suppose that n = J^^^^^^ 
operations 1 , . . . ,n have to be scheduled. For notational convenience we 
introduce two fictitious operations 0 and n -h l̂ representing the production 
start and the production end, respectively. F := { 1 , . . . , n} is the set of all 
real operations, and V := F U {0,n -h 1} is the set of all operations. Let 
Si > 0 he the start time sought of operation i. Then Sn-\-i coincides with 
the production makespan, and vector S = {Si)i£v with 5o = 0 is called a 
schedule. 
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Each processing unit can be viewed as a unit-capacity renewable re­
source with changeovers (cf. Neumann et al. 2003, Sect. 2.14). Let TZ^ be 
the set of all renewable resources and TZ^ be the set of those alternative 
renewable resources on which operation i can be carried out. For i e V 
and fc E T f̂, the binary decision variable Xik indicates whether or not re­
source fc processes operation i {xik = 1 or Xik = 0, respectively). Each real 
operation i must be executed on exactly one processing unit, i.e., 

^ x,fc = 1 {ie V) (9) 

Vector X = {xik)-^Y keW ^'^ called an assignment of operations i to process­
ing units k. By Pi(x) and Cij (x) we denote the processing time of operation i 
and the changeover time from operation i to operation j given assignment 
x, where we suppose that po{x) = pn+\{x) = 0 and coi(x) = c^(^^_i)(x) = 0 
for all i e V. 

Given a resource k G 7^^, a schedule S and an assignment x, let Pk{S, x) 
designate the set of all pairs (i, j ) such that i ^ j , Xik = Xjk = 1, and 
Si < Sj, Schedule S is called process-feasible with respect to assignment x 
if no two operations i and j overlap on a processing unit, i.e., 

Sj > Si-\-pi{x)-\-Cij{x) {k e 7̂ ^ {ij) e Pk{s,x)) (lo) 

Now we turn to the storage facilities, which can be modeled as so-
called cumulative resources (cf. Neumann and Schwindt 2002). For each 
storage facility we introduce one cumulative resource keeping its inventory. 
Let TZ^ be the set of all cumulative resources. For each k G TZ^^ a minimum 
inventory Rj^ (safety stock) and a maximum inventory Rk (storage capacity) 
are given. Assuming that each product TT is stocked in a dedicated storage 
facility k and that no safety stocks are prescribed we obtain Ri^ = 0 and 
Rf^ = cr̂ r for all k G 7?.̂ , where CTTT is the storage capacity for product TT 
(with CTTT = 0 if TT G n^). Each operation i £ V has a demand r̂ fc for 
resource k G TZ'^. If rik > 0, the inventory of resource k is replenished by 
rik units at time Si •^pi{x). If rik < 0, the inventory is depleted by —rik 
units at time Si. rok represents the initial stock level of resource fc. Suppose 
that operation i corresponds to an execution of task r and that resource fc 
is dedicated to product TT. The demand of operation i for resource fc then 

i s rik = OCrnf^T-

Let V;̂ - := {i e V \ rik > 0} and F^" := {i e V \ rik < 0} be the 
sets of operations replenishing and depleting, respectively, the inventory of 
resource fc G ̂ '^. Schedule S is said to be storage-feasible with respect to 
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assignment x if 

Rk< Y. ^^fe+ $Z '^ik<^k {keTV,t>0) (11) 
ieVi'.Si-\-pi{x)<t ieV-:Si<t 

Usually, temporal constraints of the type Sj—Si > Sij{x) for {i,j)GE 
with E CVxV have to be taken into account as well. The right-hand side 
Sij(x) is a minimum time lag between the start of operations i and j . If 
Sij{x) < 0, then —Sij{x) can be interpreted as a maxim,um time lag between 
the start of operations j and i. In case of Sij{x) = Pi(x), the corresponding 
temporal constraint is referred to as a precedence constraint, and a time 
lag Soi{x) is called a release date for operation i. For each operation i GV 
we set Soi{x) := 0 and <Ji(n+i)(^) •= Pii^)- Further time lags may be 
generated by applying constraint propagation techniques detecting tempo­
ral constraints that are satisfied by at least one optimal solution to the 
batch-scheduling problem. For example, for two operations i,j with i < j 
belonging to the same task r we can introduce the time lag Sij{x) = 0, 
without loss of optimality. 

Based on time lags Sij{x) for (z, j ) e E we can compute distances dij{x) 
between any two operations z, j E V. Distances dij{x) coincide with the 
minimum time lags between operations i and j that are implied by the 
prescribed time lags (see e.g., Neumann et al. 2003, Sect. 1.3). Given an 
assignment x, a schedule S satisfying 

Sj>Si-hSij{x) {{iJ)eE) (12) 

is called time-feasible with respect to x. 
A schedule which is time-, process-, and storage-feasible with respect to 

a given assignment x is called feasible with respect to x. A pair (5, x) 
is a feasible solution to the cyclic batch-scheduling problem if x is an 
assignment and 5 is a feasible schedule with respect to x. The cyclic 
batch-scheduling problem consists in finding a feasible solution (5, x) with 
minimum makespan Sn+i, i.e.. 

(C-BSP) { 

Minimize 5^+1 

subject to (9) to (12) 

Xik € {0,1} {iGV, kG Tef) 

3.2 Priority-Rule Based Method 

The basic idea of the priority-rule based solution method is as follows. At 
first, we choose an assignment x of operations to processing units, where 
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we balance the workload to be processed on alternative processing units by 
using a simple greedy heuristic. The method then consists of two phases. 
During the first phase, we relax the storage-capacity constraints. Using a 
serial schedule-generation scheme, the operations are iteratively scheduled 
on the processing units in such a way that the inventory does not fall be­
low the safety stock at any point in time. Based on the resulting schedule, 
precedence constraints between replenishing and depleting operations are 
introduced according to a FIFO strategy. Those precedence constraints en­
sure that the material-availability constraints are always satisfied. In the 
second phase, which again applies the serial schedule-generation scheme, 
the operations are scheduled subject to the storage-capacity and the prece­
dence constraints introduced. 

In the remainder of this subsection we explain the schedule-generation 
scheme of the first phase in more detail. We then briefly sketch the modifi­
cations needed for using the scheme in the second phase. Since assignment x 
has been fixed, we omit x in the notation of the processing times and time 
lags. 

Let Pred{j) be the set of predecessors of node j with respect to the 
strict order {(ij) eVxV \dij >0 and dji < 0}. It holds that i € Pred{j) 
precisely if operation i must be started no later than operation j but con­
versely, operation j may be started after operation i. Moreover, let C be 
the completed set of operations i already scheduled in prior iterations and 
let S^ := {Si)i^c be the partial schedule constructed. We say that an oper­
ation j ^ C is eligible for being scheduled if (i) all of its predecessors have 
been scheduled, i.e., Pred{j) C C and (ii), there is no cumulative resource 
k whose inventory level falls below the safety stock after the completion of 
all operations from set C U {jf}, i.e., rjt(5^, oo) -h rjk > Rk for all k G TZ'^. 

The procedure is now as follows (see Algorithm 1). At first, we initial­
ize the earliest and latest start times £"5^ and LSi for all i £ V. In each 
iteration of the schedule-generation scheme we then determine the set £ 
of eligible operations j , select one operation j * G £ according to prior­
ity indices 7r(j), determine the earliest feasible start time t* > ESj* for 
operation j * , schedule j * at time t*, and update the earliest and latest 
start times of the operations i not yet scheduled. Starting with partial 
schedule S^ where C = {0} and 5o = 0 we perform those steps until all 
operations have been scheduled, i.e., until C = V. 

Sometimes it may happen that due to maximum time lags between 
scheduled operations i E C and the operation j * selected, the latest start 
time LSj-*' of jf* is strictly smaller than time t*. Then no feasible start time 
can be found for operation j * , and S^ cannot be extended to a feasible 
schedule. In this case, we perform the following unscheduling step. At 
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first, we determine the set W = {i G C | LSj = Si — dj*i} of all operations 
i that must be delayed for being able to schedule j * at time t*. Then, we 
increase the earliest start times of operations i from set U by adding the 
release dates Soi = Si -\-1* — LSj*, update the distances dij accordingly, 
and restart the scheduling procedure. In the implementation shown in 
Algorithm 1, the number u of unscheduling steps is limited by some upper 
bound u. 

Algorithm 1: Schedule-generation scheme of phase 1 

u := 0; 
2: So := 0, C := {0}; 

for all 2 G V do (* initialize ESi and LSi *) 
ESi := doi, LSi •= ~c^io; 

while C^V do 
£ := {j e V\C I Predij) C C, rfc(5^,oo) + r,fc > Rf, for all k e 7e^}; 
j * := min{j G S \ 7T{J) = exthes7r{h)}; 
t' := min{^ > ESj* \ rk{S^,T) -f Vj-^k > Rk for all keU^, r > t}; 
t* := min{5j-. > t' \ S^^^^*^ is process-feasible}; 
if t* > LSj* then (* unschedule and restart *) 

u := u+ 1; 
if u>u then terminate; 
U :={ieC\ LSj* =Si- dj*i}; 
for alH G W do doi := Si-\-t* - LSj*; 
update distances dij for alH, j ' G V and goto line 2; 

else (* schedule j * at time t* *) 
Sj*:=t\C:=Cu{r}; 
for all j G F \ C do (* update ESj and LSj *) 

ESj := max{ESj, Sj* + dj*j); 
LSj := Tmn{LSjjSj* — djj*)\ 

return 5; 

After having obtained a time- and process-feasible schedule satisfying 
the material-availability constraints, we link producing and consuming op­
erations according to a FIFO strategy. This means that for each k G IZ'^ 
we iterate the replenishing operations i G Vj^ according to nondecreasing 
completion times Si +p i and allot the corresponding Vik units to depleting 
operations j G Vĵ ~ in the order of nondecreasing start times Sj. For each 
pair (i, j ) G Vk ^Vk fo^ which j consumes units produced by z, we intro­
duce a precedence constraint between i and j by setting 5ij := m.Qx{5ij^pi). 
Subsequently, we update the distances dij and proceed with the second 
phase of our procedure. 



234 Christoph Schwindt and Norbert Trautmann 

When during the second phase we deal with storage-capacity instead 
of material-availabiUty constraints, we define the eUgible set to be £ := 
[j eV\C\ Pred{j) C C, rfc(5^, oo) -h Vjk < Rk for all k e 7^^}. In the 
definition of £, we use the predecessor sets Pred{j) from the first phase in 
order to allow the scheduling of depleting operations before the replenishing 
operations allotted to them have been added to the partial schedule. The 
earliest storage-feasible start time of operation j * is now given by f' := 
mm{t > ESj* I rk{S^,T) -h rjk < 'Rk for all keTV, r > t^-pj*}. In this 
way, we ensure that any partial schedule S^ is feasible. 

3.3 Concatenation 

For generating the complete production schedule we proceed as follows. 
The (sub-)schedule S computed by the priority-rule based method defines 
precedence relationships between the operations i , j of one cycle being 
executed on the same processing unit or producing and consuming the 
same product. Those precedence relationships are translated into time lags 
5ij^ which ensure that no resource conflict can occur when left- or right-
shifting the operations. More precisely, for each pair of operations (z, j ) 
with Sj > Si -{- Pi{x) -h Cij{x) and Xik = Xjk = 1 for some k G TZ^ we 
introduce the time lag Sij = Pi{x) -\- Cij{x) preventing the overlapping of i 
and j . For pairs (i, j ) with Sj > Si +Pi{x) and Vik > 0, rjk < 0 for some 
k ^TV^ the time lags 8ij = Pi{x) guarantee the availability of the interme­
diate stocked in resource k. Eventually, we add the time lag 5ij = —pj{x) 
for each pair (z,j) with Sj -hpj(x) > Si and Vik < 0, rjk > 0 for some 
k G T̂ '̂ ', to avoid an excess of the storage capacity of resource k. Moreover, 
the completion time of the last operation that is processed on a processing 
unit defines a release date 5oi for the changeover to the first operation i on 
that unit in the next execution of the subschedule. Analogously, the last 
change in the inventory level of an intermediate gives rise to a release date 
(Joi for the first operation i that subsequently produces or consumes that 
intermediate. 

The start and completion times of the operations in the first cycle equal 
those of subschedule 5. For computing the start and completion times of 
the operations in the next cycle, we solve a temporal scheduling problem 
which consists in computing an earliest schedule for those operations sub­
ject to the precedence relationships between and the release dates for the 
operations. As it is well-known, this temporal scheduling problem can be 
solved efficiently by longest path calculations. By iteratively concatenat­
ing the u subschedule copies in this way, we finally obtain the production 
schedule sought. 
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4 Experimental Performance Analysis 

We have compared the new heuristic to the decomposition approach by 
Centner et al. (2004). The performance analysis was based on a test set 
introduced in Centner (2005), which has been constructed by varying the 
primary requirements for final products in the case study of Kallrath (2002). 
For each instance, we have computed a solution to the cyclic batching 
problem using Frontline Systems' Solver package. The subschedules have 
been computed by a randomized multi-pass version of the priority-rule 
based method presented in Section 3. The tests have been performed on an 
800 MHz Pentium III personal computer. The results for the decomposition 
approach have been reported in Centner (2005) and refer to a 1400 MHz 
Pentium IV personal computer. 

The results obtained for the 13 problem instances are shown in Table 1. 
For each problem instance the new method is able to find a markedly better 
solution. Especially for larger problem instances, the required CPU time 
is significantly smaller than for the decomposition approach. Having pre­
scribed an upper bound of £ = 100 batches, about 75 seconds are required 
for solving the cyclic batching problem. The priority-rule based method 
has been stopped after 15 seconds of CPU time. The concatenation has 
always required less than one second of CPU time. 

Table 1: Computational results 

Instance 
Centner (2005) 

Makespan tcpu [s] 
This paper 

# batches Makespan tcpu [s] 

WeKaO.l 
WeKaO.2 
WeKaO.3 
WeKaO.4 
WeKaO.5 
WeKaO.6 
WeKaO.7 
WeKaO.8 
WeKaO.9 
WeKa0.10 
WeKaO-15 
WeKa0.20 
WeKa0.30 

352 
474 
612 
738 
906 

1046 
1199 
1334 
1548 
1740 
2123 
2899 
4416 

38 
53 

120 
209 
178 
215 
323 
281 
399 
431 
644 

1500 
5235 

176 
264 
352 
440 
528 
616 
704 
792 
880 
968 

1408 
1848 
2728 

264 
390 
516 
642 
768 
894 

1020 
1146 
1272 
1398 
2028 
2658 
3918 

89 
89 
89 
89 
89 
90 
91 
91 
91 
91 
91 
91 
92 
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5 Conclusions 

We have considered a short-term planning problem of batch production 
in the process industries. We have proposed a heuristic solution method 
for solving large-scale instances of this problem, consisting of the three 
steps cyclic batching, cyclic batch-scheduling, and concatenation. Because 
each of those steps has to be performed only once, the computational re­
quirements of the heuristic are moderate. In an experimental performance 
analysis, we have shown that the new method clearly outperforms the best 
solution approach known from literature. 

An important area of future research is, for example, the design of 
efficient solution methods for the case of continuous production, where the 
production and consumption rates of products are decision variables as 
well. Moreover, procedures for robust and reactive short-term planning 
should be developed, which are able to cope with uncertainty with respect 
to planning data like primary requirements, processing times, or yields. 
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