
A Cyclic Approach to Large-Scale Short-Term Planning
of Multipurpose Batch Plants

Christoph Schwindt

Institute of Management and Economics
Clausthal University of Technology

Norbert Trautmann

Departement fiir Betriebswirtschaftslehre
University of Bern

1 Introduction

In the process industries, final products arise from chemical and physi­
cal transformations of materials on processing units. In batch production
mode, the total requirements for intermediate and final products are di­
vided into individual batches. To produce a batch, at first the input ma­
terials are loaded into a processing unit. Then a transformation process,
called a task^ is performed, and finally the output products are unloaded
from the processing unit. Typically, a plant is operated in batch produc­
tion mode when a large number of different products are processed on
multi-purpose equipment. That is why we consider multi-purpose process­
ing units, which can operate different tasks. Symmetrically, a task may be
executed on different processing units, in which case the duration of the
task may depend on the processing unit used. For a practical example of a
multi-purpose batch production plant we refer to the case study presented
by Kallrath (2002).

The minimum and maximum filling levels of a processing unit give rise
to lower and upper bounds on the batch size. The input and the output
proportions of the products consumed or produced, respectively, by a task
are either fixed or variable within prescribed bounds. In general, storage
facilities of limited capacity are available for stocking raw materials, inter­
mediates, and final products. Some products are perishable and must be
consumed immediately after production.

Between consecutive executions of different tasks on a processing unit,
a changeover with sequence-dependent duration is necessary. Since the
changeover times may be considerably large, the plant is generally con­
figured according to a subset of the required final products. Before pro­
cessing the next set of final products, the plant has to be reconfigured.

226 Christoph Schwindt and Norbert Trautmann

which requires the completion of all operations. In this context, the ob­
jective of makespan minimization is particularly important for ensuring a
high resource utilization and short customer lead times. Given the primary
requirements for final products, the short-term planning problem studied
in this paper consists in computing a feasible production schedule with
minimum makespan.

Various solution methods for this problem are known from literature.
Most of them follow a monolithic approach, which addresses the problem
as a whole, starting from a mixed-integer linear programming formulation
of the problem. In those models, the time horizon is divided into a given
number of time periods, the period length being either fixed (time-indexed
formulations, cf. e.g., Kondili et al. 1993) or variable (continuous-time for­
mulations, see e.g., lerapetritou and Floudas 1998 or Castro et al. 2001).
The main disadvantage of the monolithic approaches is that the CPU time
requirements for solving real-world problems tend to be prohibitively high
(cf. Maravelias and Grossmann 2004). To overcome this diflSculty, different
heuristics reducing the number of variables have been developed (cf. e.g.,
Blomer and Giinther 1998).

A promising alternative approach is based on the decomposition of the
short-term planning problem into interdependent subproblems. Such de­
composition methods have, for example, been proposed by Brucker and
Hurink (2000), Neumann et al. (2002), and MaraveUas and Grossmann
(2004). The solution approach developed in what follows is based on the
hierarchical decomposition into a batching and a batch-scheduling problem
presented in Neumann et al. (2002). Batching provides a set of batches
for the intermediate and final products needed to satisfy the primary re­
quirements. Batch scheduling allocates the processing units, intermediates,
and storage facilities over time to the processing of the batches arising
from the batching step. The batching problem can be formulated as a
mixed-integer nonlinear program (MINLP) of moderate size, which can be
solved using standard mathematical programming software. For solving the
batch-scheduling problem, a truncated branch-and-bound method and a
priority-rule-based method have been developed by Neumann et al. (2002)
and Schwindt and Trautmann (2004), respectively. Within a reasonable
amount of CPU time, good feasible solutions to problem instances with up
to 100 batches can be computed with both methods. Recently, Centner et
al. (2004) have proposed a decomposition of the batch-scheduling problem
which partitions the set of all batches into a sequence of subsets. The as­
signment of the batches to the individual subsets is determined stepwise
by solving a binary linear program in each iteration. This decomposition
method is able to approximatively solve batch-scheduling instances with

A Cyclic Approach to Short-Term Planning of Batch Plants 227

up to about 3000 batches in the space of several hours of CPU time (cf.
Centner et al. 2004 and Centner 2005).

In this paper, we present a cycUc scheduHng approach to the short-term
planning problem. A preliminary version of this method can be found in
Trautmann (2005). The basic idea consists in reducing the size of the
batch-scheduling problem by computing a cyclic subschedule, which is exe­
cuted several times. The set of batches belonging to one cycle is determined
by solving an MINLP, which also provides the number of cycles needed to
satisfy the primary requirements {cyclic batching problem). To guarantee
that the resulting batch-scheduling problem remains tractable, we impose
an upper bound on the number of batches per cycle. The subschedule
is then obtained by scheduling the batches on the processing units sub­
ject to material-availability and storage-capacity constraints {cyclic batch-
scheduling problem). The latter problem is solved using the priority-rule
based method proposed in Schwindt and Trautmann (2004).

The remainder of this paper is organized as follows. In Section 2 we
formulate the cyclic batching problem as an MINLP and briefly discuss
structural issues. Section 3 is devoted to the cyclic batch-scheduling prob­
lem and the generation of a complete production schedule by efficiently
concatenating copies of the subschedule. In Section 4 we report on results
of an experimental performance analysis.

2 Cyclic Batching

Let T be the set of all tasks and let ^r and £r be the batch size and the
number of batches for task r G T. By 11" and II:;!" we denote the sets of
input and output products, respectively, of task r G T. Ilr := I I " U n:;t
is the set of all input and output products of task r , and II := UreT^r is
the set of all products considered. In addition to /3r and Er, the (negative)
proportions am < 0 of all input products n € II^ and the (positive)
proportions â Tr > 0 of all output products n £ Il:j: have to be determined
for all tasks r G T such that

Y, a., = - J2 " - = 1 (^eT) (1)
neut Tren-

Proportions Q̂ TT and batch sizes Pr have to be chosen within prescribed
intervals [a^^.am] and [^^,'^ri i-^-,

a^^ < a < am (r G T, TT G Ur) (2)

§_^<P<A {reT) (3)

228 Christoph Schwindt and Norbert Trautmann

Let T~ and T j be the sets of all tasks consuming and producing, respec­
tively, product TT G n and let 11^ C 11 be the set of perishable products.
Then equations

arnPr = -OCr'^Pr' (TT G H ^ (T, T') G T / X T ") (4)

ensure that the amount of product TT G H^ produced by one batch of
some task r G T;t" can immediately be consumed by any task r' G T~
consuming TT.

By n* C n we denote the set of intermediates. In order to obtain a cyclic
solution, which allows us to execute the same subschedule an arbitrary
number of times, the amount of an intermediate TT produced within one
cycle must be equal to the amount of TT consumed, i.e.,

Y, C^rnPrSr = 0 (TT G W) (5)
r € T ,

Proportions am, batch sizes /3r, and the numbers of batches £r define
the set of batches belonging to one cycle. The number of cycles needed
is a decision variable i/ G Z>o whose value depends on the given primary
requirements for final products. Let n-^ C 11 be the set of all final products
and let QT^ be the primary requirement less the initial stock of product
TT G n-^. The final inventory of product n then equals i^XlreT^^TriSr^r-
This amount must be sufficiently large to match the requirements QT^ for TT,
i.e.,

1/ ^ arnfirSr > Q^ {T^ ^ H^) (6)

In addition, the number of batches within one cycle must not exceed the
prescribed upper bound e, i.e.,

r€T^

Finally, let pr be the mean processing time of task r on the alter­
native processing units. To minimize the workload to be scheduled in the
batch-scheduling step, the objective function is chosen to be the total mean
processing time I^XITGT^^^^* -̂ ^ ' ^^^J ^^^ cycUc batching problem reads

(C-BP) {

Minimize u YlreT Pr^r
subject to (1) to (7)

Er G Z>o (r G T)

i / G

A Cyclic Approach to Short-Term Planning of Batch Plants 229

For a given value of i/, problem (C-BP) can be transformed into a
mixed-binary linear program with binary decision variables Off: {r GT^ JJL =
! , . . . , £) being equal to one exactly \i£r > ^ and continuous decision vari­
ables ^^^ (r G T, TT G Hr, /i = 1 , . . . ,£) with ^^^ = a^Tr/Jr if 6>(f = 1 and
ĵjf̂ = 0, otherwise (see Neumann et al. 2002 for details). Now suppose

without loss of generality that max^ren/ PTT > 0- Due to i/ > 0 for any
feasible solution to (C-BP), inequality (6) can be rewritten as

7" EE^-<o (TrenO (8)

Let (C-BP) denote the continuous relaxation of the reformulated batching
problem with decision variables Off: and £,!f^. Since for each TT G H-̂ the left-
hand side of (8) is a convex function and because all remaining constraints
of (C-BP) are linear, the feasible region of (C-BP) is a convex set. Moreover,
the objective function ^'^^-eT^^ 5^I=i ^r ^f (C-BP) is increasing on the
feasible region.

3 Cyclic Batch-Scheduling and Concatenation

In this section we explain our method for solving the batch-scheduling prob­
lem. In Subsections 3.1 and 3.2, where we closely follow the presentation of
Schwindt and Trautmann (2004), we are concerned with the scheduling of
the batches belonging to one cycle. In Subsection 3.3 we show how a com­
plete production schedule for the execution of the v cycles can be efficiently
constructed from the cyclic subschedule.

3.1 Statement of the Cyclic Batch-Scheduling Problem

Recall that solving the batching problem has provided us with the set of
batches belonging to one cycle. For what follows, the processing of a batch
on a processing unit is called an operation. Suppose that n = J^^^^^^
operations 1 , . . . ,n have to be scheduled. For notational convenience we
introduce two fictitious operations 0 and n -h l̂ representing the production
start and the production end, respectively. F := { 1 , . . . , n} is the set of all
real operations, and V := F U {0,n -h 1} is the set of all operations. Let
Si > 0 he the start time sought of operation i. Then Sn-\-i coincides with
the production makespan, and vector S = {Si)i£v with 5o = 0 is called a
schedule.

230 Christoph Schwindt and Norbert Trautmann

Each processing unit can be viewed as a unit-capacity renewable re­
source with changeovers (cf. Neumann et al. 2003, Sect. 2.14). Let TZ^ be
the set of all renewable resources and TZ^ be the set of those alternative
renewable resources on which operation i can be carried out. For i e V
and fc E T f̂, the binary decision variable Xik indicates whether or not re­
source fc processes operation i {xik = 1 or Xik = 0, respectively). Each real
operation i must be executed on exactly one processing unit, i.e.,

^ x,fc = 1 {ie V) (9)

Vector X = {xik)-^Y keW ^'^ called an assignment of operations i to process­
ing units k. By Pi(x) and Cij (x) we denote the processing time of operation i
and the changeover time from operation i to operation j given assignment
x, where we suppose that po{x) = pn+\{x) = 0 and coi(x) = c^(^^_i)(x) = 0
for all i e V.

Given a resource k G 7^^, a schedule S and an assignment x, let Pk{S, x)
designate the set of all pairs (i, j) such that i ^ j , Xik = Xjk = 1, and
Si < Sj, Schedule S is called process-feasible with respect to assignment x
if no two operations i and j overlap on a processing unit, i.e.,

Sj > Si-\-pi{x)-\-Cij{x) {k e 7̂ ^ {ij) e Pk{s,x)) (lo)

Now we turn to the storage facilities, which can be modeled as so-
called cumulative resources (cf. Neumann and Schwindt 2002). For each
storage facility we introduce one cumulative resource keeping its inventory.
Let TZ^ be the set of all cumulative resources. For each k G TZ^^ a minimum
inventory Rj^ (safety stock) and a maximum inventory Rk (storage capacity)
are given. Assuming that each product TT is stocked in a dedicated storage
facility k and that no safety stocks are prescribed we obtain Ri^ = 0 and
Rf^ = cr̂ r for all k G 7?.̂ , where CTTT is the storage capacity for product TT
(with CTTT = 0 if TT G n^). Each operation i £ V has a demand r̂ fc for
resource k G TZ'^. If rik > 0, the inventory of resource k is replenished by
rik units at time Si •^pi{x). If rik < 0, the inventory is depleted by —rik
units at time Si. rok represents the initial stock level of resource fc. Suppose
that operation i corresponds to an execution of task r and that resource fc
is dedicated to product TT. The demand of operation i for resource fc then

i s rik = OCrnf^T-

Let V;̂ - := {i e V \ rik > 0} and F^" := {i e V \ rik < 0} be the
sets of operations replenishing and depleting, respectively, the inventory of
resource fc G ̂ '^. Schedule S is said to be storage-feasible with respect to

A Cyclic Approach to Short-Term Planning of Batch Plants 231

assignment x if

Rk< Y. ^^fe+ $Z '^ik<^k {keTV,t>0) (11)
ieVi'.Si-\-pi{x)<t ieV-:Si<t

Usually, temporal constraints of the type Sj—Si > Sij{x) for {i,j)GE
with E CVxV have to be taken into account as well. The right-hand side
Sij(x) is a minimum time lag between the start of operations i and j . If
Sij{x) < 0, then —Sij{x) can be interpreted as a maxim,um time lag between
the start of operations j and i. In case of Sij{x) = Pi(x), the corresponding
temporal constraint is referred to as a precedence constraint, and a time
lag Soi{x) is called a release date for operation i. For each operation i GV
we set Soi{x) := 0 and <Ji(n+i)(^) •= Pii^)- Further time lags may be
generated by applying constraint propagation techniques detecting tempo­
ral constraints that are satisfied by at least one optimal solution to the
batch-scheduling problem. For example, for two operations i,j with i < j
belonging to the same task r we can introduce the time lag Sij{x) = 0,
without loss of optimality.

Based on time lags Sij{x) for (z, j) e E we can compute distances dij{x)
between any two operations z, j E V. Distances dij{x) coincide with the
minimum time lags between operations i and j that are implied by the
prescribed time lags (see e.g., Neumann et al. 2003, Sect. 1.3). Given an
assignment x, a schedule S satisfying

Sj>Si-hSij{x) {{iJ)eE) (12)

is called time-feasible with respect to x.
A schedule which is time-, process-, and storage-feasible with respect to

a given assignment x is called feasible with respect to x. A pair (5, x)
is a feasible solution to the cyclic batch-scheduling problem if x is an
assignment and 5 is a feasible schedule with respect to x. The cyclic
batch-scheduling problem consists in finding a feasible solution (5, x) with
minimum makespan Sn+i, i.e..

(C-BSP) {

Minimize 5^+1

subject to (9) to (12)

Xik € {0,1} {iGV, kG Tef)

3.2 Priority-Rule Based Method

The basic idea of the priority-rule based solution method is as follows. At
first, we choose an assignment x of operations to processing units, where

232 Christoph Schwindt and Norbert Trautmann

we balance the workload to be processed on alternative processing units by
using a simple greedy heuristic. The method then consists of two phases.
During the first phase, we relax the storage-capacity constraints. Using a
serial schedule-generation scheme, the operations are iteratively scheduled
on the processing units in such a way that the inventory does not fall be­
low the safety stock at any point in time. Based on the resulting schedule,
precedence constraints between replenishing and depleting operations are
introduced according to a FIFO strategy. Those precedence constraints en­
sure that the material-availability constraints are always satisfied. In the
second phase, which again applies the serial schedule-generation scheme,
the operations are scheduled subject to the storage-capacity and the prece­
dence constraints introduced.

In the remainder of this subsection we explain the schedule-generation
scheme of the first phase in more detail. We then briefly sketch the modifi­
cations needed for using the scheme in the second phase. Since assignment x
has been fixed, we omit x in the notation of the processing times and time
lags.

Let Pred{j) be the set of predecessors of node j with respect to the
strict order {(ij) eVxV \dij >0 and dji < 0}. It holds that i € Pred{j)
precisely if operation i must be started no later than operation j but con­
versely, operation j may be started after operation i. Moreover, let C be
the completed set of operations i already scheduled in prior iterations and
let S^ := {Si)i^c be the partial schedule constructed. We say that an oper­
ation j ^ C is eligible for being scheduled if (i) all of its predecessors have
been scheduled, i.e., Pred{j) C C and (ii), there is no cumulative resource
k whose inventory level falls below the safety stock after the completion of
all operations from set C U {jf}, i.e., rjt(5^, oo) -h rjk > Rk for all k G TZ'^.

The procedure is now as follows (see Algorithm 1). At first, we initial­
ize the earliest and latest start times £"5^ and LSi for all i £ V. In each
iteration of the schedule-generation scheme we then determine the set £
of eligible operations j , select one operation j * G £ according to prior­
ity indices 7r(j), determine the earliest feasible start time t* > ESj* for
operation j * , schedule j * at time t*, and update the earliest and latest
start times of the operations i not yet scheduled. Starting with partial
schedule S^ where C = {0} and 5o = 0 we perform those steps until all
operations have been scheduled, i.e., until C = V.

Sometimes it may happen that due to maximum time lags between
scheduled operations i E C and the operation j * selected, the latest start
time LSj-*' of jf* is strictly smaller than time t*. Then no feasible start time
can be found for operation j * , and S^ cannot be extended to a feasible
schedule. In this case, we perform the following unscheduling step. At

A Cyclic Approach to Short-Term Planning of Batch Plants 233

first, we determine the set W = {i G C | LSj = Si — dj*i} of all operations
i that must be delayed for being able to schedule j * at time t*. Then, we
increase the earliest start times of operations i from set U by adding the
release dates Soi = Si -\-1* — LSj*, update the distances dij accordingly,
and restart the scheduling procedure. In the implementation shown in
Algorithm 1, the number u of unscheduling steps is limited by some upper
bound u.

Algorithm 1: Schedule-generation scheme of phase 1

u := 0;
2: So := 0, C := {0};

for all 2 G V do (* initialize ESi and LSi *)
ESi := doi, LSi •= ~c^io;

while C^V do
£ := {j e V\C I Predij) C C, rfc(5^,oo) + r,fc > Rf, for all k e 7e^};
j * := min{j G S \ 7T{J) = exthes7r{h)};
t' := min{^ > ESj* \ rk{S^,T) -f Vj-^k > Rk for all keU^, r > t};
t* := min{5j-. > t' \ S^^^^*^ is process-feasible};
if t* > LSj* then (* unschedule and restart *)

u := u+ 1;
if u>u then terminate;
U :={ieC\ LSj* =Si- dj*i};
for alH G W do doi := Si-\-t* - LSj*;
update distances dij for alH, j ' G V and goto line 2;

else (* schedule j * at time t* *)
Sj*:=t\C:=Cu{r};
for all j G F \ C do (* update ESj and LSj *)

ESj := max{ESj, Sj* + dj*j);
LSj := Tmn{LSjjSj* — djj*)\

return 5;

After having obtained a time- and process-feasible schedule satisfying
the material-availability constraints, we link producing and consuming op­
erations according to a FIFO strategy. This means that for each k G IZ'^
we iterate the replenishing operations i G Vj^ according to nondecreasing
completion times Si +p i and allot the corresponding Vik units to depleting
operations j G Vĵ ~ in the order of nondecreasing start times Sj. For each
pair (i, j) G Vk ^Vk fo^ which j consumes units produced by z, we intro­
duce a precedence constraint between i and j by setting 5ij := m.Qx{5ij^pi).
Subsequently, we update the distances dij and proceed with the second
phase of our procedure.

234 Christoph Schwindt and Norbert Trautmann

When during the second phase we deal with storage-capacity instead
of material-availabiUty constraints, we define the eUgible set to be £ :=
[j eV\C\ Pred{j) C C, rfc(5^, oo) -h Vjk < Rk for all k e 7^^}. In the
definition of £, we use the predecessor sets Pred{j) from the first phase in
order to allow the scheduling of depleting operations before the replenishing
operations allotted to them have been added to the partial schedule. The
earliest storage-feasible start time of operation j * is now given by f' :=
mm{t > ESj* I rk{S^,T) -h rjk < 'Rk for all keTV, r > t^-pj*}. In this
way, we ensure that any partial schedule S^ is feasible.

3.3 Concatenation

For generating the complete production schedule we proceed as follows.
The (sub-)schedule S computed by the priority-rule based method defines
precedence relationships between the operations i , j of one cycle being
executed on the same processing unit or producing and consuming the
same product. Those precedence relationships are translated into time lags
5ij^ which ensure that no resource conflict can occur when left- or right-
shifting the operations. More precisely, for each pair of operations (z, j)
with Sj > Si -{- Pi{x) -h Cij{x) and Xik = Xjk = 1 for some k G TZ^ we
introduce the time lag Sij = Pi{x) -\- Cij{x) preventing the overlapping of i
and j . For pairs (i, j) with Sj > Si +Pi{x) and Vik > 0, rjk < 0 for some
k ^TV^ the time lags 8ij = Pi{x) guarantee the availability of the interme­
diate stocked in resource k. Eventually, we add the time lag 5ij = —pj{x)
for each pair (z,j) with Sj -hpj(x) > Si and Vik < 0, rjk > 0 for some
k G T̂ '̂ ', to avoid an excess of the storage capacity of resource k. Moreover,
the completion time of the last operation that is processed on a processing
unit defines a release date 5oi for the changeover to the first operation i on
that unit in the next execution of the subschedule. Analogously, the last
change in the inventory level of an intermediate gives rise to a release date
(Joi for the first operation i that subsequently produces or consumes that
intermediate.

The start and completion times of the operations in the first cycle equal
those of subschedule 5. For computing the start and completion times of
the operations in the next cycle, we solve a temporal scheduling problem
which consists in computing an earliest schedule for those operations sub­
ject to the precedence relationships between and the release dates for the
operations. As it is well-known, this temporal scheduling problem can be
solved efficiently by longest path calculations. By iteratively concatenat­
ing the u subschedule copies in this way, we finally obtain the production
schedule sought.

A Cyclic Approach to Short-Term Planning of Batch Plants 235

4 Experimental Performance Analysis

We have compared the new heuristic to the decomposition approach by
Centner et al. (2004). The performance analysis was based on a test set
introduced in Centner (2005), which has been constructed by varying the
primary requirements for final products in the case study of Kallrath (2002).
For each instance, we have computed a solution to the cyclic batching
problem using Frontline Systems' Solver package. The subschedules have
been computed by a randomized multi-pass version of the priority-rule
based method presented in Section 3. The tests have been performed on an
800 MHz Pentium III personal computer. The results for the decomposition
approach have been reported in Centner (2005) and refer to a 1400 MHz
Pentium IV personal computer.

The results obtained for the 13 problem instances are shown in Table 1.
For each problem instance the new method is able to find a markedly better
solution. Especially for larger problem instances, the required CPU time
is significantly smaller than for the decomposition approach. Having pre­
scribed an upper bound of £ = 100 batches, about 75 seconds are required
for solving the cyclic batching problem. The priority-rule based method
has been stopped after 15 seconds of CPU time. The concatenation has
always required less than one second of CPU time.

Table 1: Computational results

Instance
Centner (2005)

Makespan tcpu [s]
This paper

batches Makespan tcpu [s]

WeKaO.l
WeKaO.2
WeKaO.3
WeKaO.4
WeKaO.5
WeKaO.6
WeKaO.7
WeKaO.8
WeKaO.9
WeKa0.10
WeKaO-15
WeKa0.20
WeKa0.30

352
474
612
738
906

1046
1199
1334
1548
1740
2123
2899
4416

38
53

120
209
178
215
323
281
399
431
644

1500
5235

176
264
352
440
528
616
704
792
880
968

1408
1848
2728

264
390
516
642
768
894

1020
1146
1272
1398
2028
2658
3918

89
89
89
89
89
90
91
91
91
91
91
91
92

236 Christoph Schwindt and Norbert Trautmann

5 Conclusions

We have considered a short-term planning problem of batch production
in the process industries. We have proposed a heuristic solution method
for solving large-scale instances of this problem, consisting of the three
steps cyclic batching, cyclic batch-scheduling, and concatenation. Because
each of those steps has to be performed only once, the computational re­
quirements of the heuristic are moderate. In an experimental performance
analysis, we have shown that the new method clearly outperforms the best
solution approach known from literature.

An important area of future research is, for example, the design of
efficient solution methods for the case of continuous production, where the
production and consumption rates of products are decision variables as
well. Moreover, procedures for robust and reactive short-term planning
should be developed, which are able to cope with uncertainty with respect
to planning data like primary requirements, processing times, or yields.

References

[1] Blomer F, Giinther HO (1998) Scheduling of a multi-product batch
process in the chemical industry. Computers in Industry 36:245-259

[2] Brucker P, Hurink J (2000) Solving a chemical batch scheduling prob­
lem by local search. Annals of Operations Research 96:17-36

[3] Castro P, Barbosa-Povoa AP, Matos H (2001) An improved RTN
continuous-time formulation for the short-term scheduling of multi­
purpose batch plants. Industrial & Engineering Chemistry Research
40:2059-2068

[4] Centner K (2005) Dekompositionsverfahren fiir die ressourcenbe-
schrankte Projektplanung. Shaker Verlag, Aachen

[5] Centner K, Neumann K, Schwindt C, Trautmann N (2004) Batch
production scheduling in the process industries. In: Leung JYT (ed.)
Handbook of Scheduling: Algorithms, Models, and Performance Anal­
ysis. CRC Press, Boca Raton, pp. 48/1-48/21

[6] lerapetritou MC, Floudas CA (1998) Effective continuous-time for­
mulation for short-term scheduling. 1. Multipurpose batch processes.
Industrial & Engineering Chemistry Research 37:4341-4359

[7] Kallrath J (2002) Planning and scheduling in the process industry.
OR Spectrum 24:219-250

A Cyclic Approach to Short-Term Planning of Batch Plants 237

[8] Kondili E, Pantelides CC, Sargent RWH (1993) A general algorithm
for short-term scheduling of batch operations: I. MILP Formulation.
Computers and Chemical Engineering 17:211-227

[9] Maravelias CT, Grossmann IE (2004) A hybrid MILP/CP decompo­
sition approach for the continuous time scheduling of multipurpose
batch plants. Computers and Chemical Engineering 28:1921-1949

[10] Neumann K, Schwindt C (2002) Project scheduling with inventory
constraints. Mathematical Methods of Operations Research 56:513-
533

[11] Neumann K, Schwindt C, Trautmann N (2002) Advanced produc­
tion scheduling for batch plants in process industries. OR Spectrum
24:251-279

[12] Neumann K, Schwindt C, Zimmermann J (2003) Project ScheduUng
with Time Windows and Scarce Resources. Springer, Berlin

[13] Schwindt C, Trautmann N (2004) A priority-rule based method for
batch production scheduling in the process industries. In: Ahr D,
Fahrion R, Oswald M, Reinelt G (eds) Operations Research Proceed­
ings 2003. Springer, Berlin, pp. 111-118

[14] Trautmann N (2005) Operative Planung der Chargenproduktion.
Deutscher Universitats-Verlag, Wiesbaden

