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In process industries, final products result from several successive

chemical or physical transformations of raw materials using scarce

production resources. We consider the scheduling of a production

plant processing a given set of operations in continuous production

mode. The different production levels are decoupled by intermediate

storage facilities. For each operation, the processing time, the produc-

tion resources used, and the total quantities of input and output prod-

ucts consumed and produced, respectively, are known. The problem

consists of allocating the resources over time such that during the pro-

cessing of each operation, a sufficient amount of input products and

sufficient storage capacity for output products is available, prescribed

time lags between operations are observed, and some convex objec-

tive function in the start times of the operations is minimized. For

solving this problem, we propose a branch-and-bound algorithm that

is based on the representation of resource and inventory constraints

as disjunctions of linear inequality systems.

1 INTRODUCTION

Let O be a set of operations to be executed on a chemical production plant
driven in continuous production mode. The production plant consists of pro-
cessing units that are linked by storage facilities for intermediate products.
Each operation i ∈ O is associated with a processing time pi. While being
in progress, i consumes input and produces output products at constant rates
and requires rik units of certain production resources k with capacity Rk such
as processing units and operators. Let R be the set of all resources used and
let P be the set of all products consumed and produced by operations i ∈ O.
O−

π and O+
π are the sets of operations consuming or producing, respectively,

product π ∈ P . For i ∈ O−
π , ρiπ < 0 denotes the negative amount of product π

consumed and for i ∈ O+
π , ρiπ > 0 denotes the (positive) amount of product π

produced by operation i. Each product π ∈ P is stocked in a dedicated storage
facility with storage capacity Rπ ≥ 0. Rπ ≤ Rπ is the safety stock of product π.
For certain pairs of operations (i, j) ∈ E ⊂ O × O, a minimum time lag δij
between the start of operation i and the start of operation j is prescribed. A
negative minimum time lag δij can be interpreted as positive maximum time



lag −δij between operation j and operation i. These temporal constraints may
arise from technological or organizational requirements such as release dates
for raw materials, delivery dates for final products, or precedence relationships
between operations.

We consider the problem of finding a start time Si for each operation i ∈ O
such that some convex function f(S1, . . . , Sn) like the production makespan
maxi∈O(Si + pi) is minimized and the temporal constraints as well as the re-
source and inventory constraints arising from the limited availability of re-
sources, storage capacities, and input products are taken into account.

The problem of minimizing the makespan subject to resource constraints
and temporal constraints between operations has been treated in the frame-
work of resource-constrained project scheduling, see for example Bartusch et
al. (1988), De Reyck and Herroelen (1998), Dorndorf et al. (2000), or Franck et
al. (2001). Neumann and Schwindt (1999) and Laborie (2001) have considered
project scheduling problems subject to inventory constraints for the case of in-
finite production and consumption rates. The scheduling of batch production
plants in process industries including production resources and storage facilities
has been dealt with in Schwindt and Trautmann (2000).

2 MODEL

Let S = (S1, . . . , Sn) with Si ≥ 0 for all i ∈ O be some production schedule.
Then A(S, t) := {i ∈ O | Si ≤ t < Si + pi} is the set of activities being
processed at time t and

rk(S, t) :=
∑

i∈A(S,t)

rik

is the amount of resource k ∈ R used at time t. By

xi(S, t) =







0, if t < Si

1, if t ≥ Si + pi
(t− Si)/pi, otherwise

we denote the portion of operation i ∈ O that has been processed by time t.
The inventory of product π ∈ P at time t is

ρπ(S, t) :=
∑

i∈Oπ

ρiπxi(S, t)

where Oπ := O−
π ∪ O+

π . The temporal constraints can be written as

Sj − Si ≥ δij ((i, j) ∈ E)

The production scheduling problem to be dealt with can now be formulated as
follows.

Minimize f(S)

subject to rk(S, t) ≤ Rk (k ∈ R, t ≥ 0) (1)

Rπ ≤ ρπ(S, t) ≤ Rπ (π ∈ P , t ≥ 0) (2)

Sj − Si ≥ δij ((i, j) ∈ E) (3)

Si ≥ 0 (i ∈ O) (4)



Let SR and SI denote the sets of schedules complying with the resource
constraints (1) and the inventory constraints (2), respectively. By ST we denote
the set of all schedules satisfying the temporal constraints (3). S = SR∩SI∩ST

is the set of all feasible schedules. An optimal schedule is a feasible schedule
minimizing f .

3 SOLUTION METHOD

In what follows, we extend an approach devised by De Reyck and Herroelen
(1998) for project scheduling with renewable resources to deal with our prob-
lem. Neumann and Schwindt (1999) have generalized the latter approach to
scheduling problems with inventory constraints where the consumption and
production rates are infinite.

The basic principle is as follows. We omit the difficult resource and inventory
constraints (1) and (2) and solve the resulting convex program by computing
some schedule S that minimizes function f on polyhedron ST . If S is feasible,
S is an optimal schedule. Otherwise, we determine some point in time t for
which constraint (1) or (2) is not satisfied.

Excessive utilization of some resource k ∈ R at time t can be resolved by
finding a partition (A,B) of A(S, t) such that A is an ⊆-maximal set with total
requirements

∑

i∈A rik ≤ Rk. We then select some operation i from set A and
introduce precedence relationships between i and all operations j ∈ B, that is,
we add the temporal constraints

Sj − Si ≥ pi (j ∈ B) (5)

to the convex program, which is then solved again.
We now consider how to deal with violations of the inventory constraints.

For notational convenience, we suppose that all storage capacities are infinite.
This can always be ensured by the following transformation. For each product
π ∈ P , we set Rπ := ∞ and add a fictitious product π′ with ρiπ′ := −ρiπ for
all i ∈ Oπ and Rπ′ := −Rπ, Rπ′ := ∞.

Now assume that at time t, the inventory of some product π ∈ P falls below
the safety stock Rπ. We partition Oπ into two sets A and B with the following
meaning. A contains all operations j ∈ O−

π that will be completed by deadline t
and all operations j ∈ O+

π that will be released at time t, that is,

Sj ≤ t− pj (j ∈ A ∩O−
π )

Sj ≥ t (j ∈ A ∩O+
π )

}

(6)

The demand for product π at time t arising from operations j ∈ A equals
−
∑

j∈A∩O−

π
ρjπ . The operations j from set B must be scheduled such that at

time t, their replenishment of product π is greater than or equal to the inventory
shortage caused by the operations from set A, i.e.,

∑

j∈B ρjπxj(S, t) ≥ Rπ −
∑

j∈A∩O−

π
ρjπ . This can be ensured as follows. For each operation j ∈ B, we

introduce a continuous decision variable xj with

0 ≤ xj ≤ 1 (j ∈ B) (7)



providing the portion of operation j that will be processed by time t. The
requirement that the inventory of product π at time t must not fall below Rπ

then reads
∑

j∈B

ρjπxj ≥ Rπ −
∑

j∈A∩O−

π

ρjπ (8)

The coupling between decision variables xj and Sj is achieved by the release
date and deadline constraints (parameterized in xj)

Sj ≥ t− pjxj (j ∈ B ∩ O−
π )

Sj ≤ t− pjxj (j ∈ B ∩ O+
π )

}

(9)

Inequalities (9) ensure that for each schedule S satisfying (9), xj ≥ xj(S, t) if
operation j ∈ B depletes and that xj ≤ xj(S, t) if operation j ∈ B replenishes
the stock of π. Adding constraints (6) to (9) to the convex program settles the
inventory shortage at time t.

The inventory of a product π attains its minimum at a point in time t when
some producing operation i is started or when some consuming operation i is
terminated. That is why time t can always be chosen to be equal to Si for
some i ∈ O+

π or equal to Si + pi for some i ∈ O−
π , and thus we can replace t in

(6) and (9) by Si or Si+ pi. We then write Aπi and Bπi instead of A and B as
well as xπi

j instead of xj . Note that without loss of generality we can assume

i ∈ Aπi for all π ∈ P and all i ∈ Oπ because the corresponding inequality
(6) is always satisfied. Replacing constants t with variables Si ensures that
only a finite number of constraints have to be introduced before the inventory
constraints are satisfied.

From the above reasoning we obtain the following Lemma.

Lemma 1 A schedule S is inventory-feasible if and only if for each product
π ∈ P and each operation i ∈ O+

π (i ∈ O−
π ) there exists a partition {Aπi, Bπi}

of set Oπ such that for some xπi ∈ [0, 1]|B
πi|

1. Si − Sj ≥ pj (pj − pi) for all j ∈ O−
π ∩Aπi,

2. Sj − Si ≥ 0 (pi) for all j ∈ O+
π ∩ Aπi,

3. Sj − Si ≥ −pjx
πi
j (pi − pjx

πi
j ) for all j ∈ O−

π ∩Bπi,

4. Si − Sj ≥ pjx
πi
j (pjx

πi
j − pi) for all j ∈ O+

π ∩Bπi, and

5.
∑

j∈Bπi ρjπx
πi
j ≥ Rπ −

∑

j∈Aπi∩O−

π
ρjπ.

In Bartusch et al. (1988) it has been shown that set SR represents the union
of finitely many polyhedra each of which possesses a unique minimal point. As
a direct consequence of Lemma 1, we obtain the following characterization of
the set of inventory-feasible schedules SI .

Proposition 2 SI represents the union of finitely many polyhedra. The set of
all minimal points of SI is generally uncountable.



The solution procedure for the production scheduling problem is now as
follows. We solve the convex program

(CP)























Minimize f(S)

subject to (3) and (4)

(5) for pairs (i, B) selected

(6) to (9) for partitions {Aπi, Bπi} selected

—at the beginning, no pairs (i, B) and no partitions {Aπi, Bπi} have been
selected—and add new constraints of type (5) or (6) to (9) either until the
feasible region of (CP) becomes void or until the resulting schedule S is fea-
sible. Then we return to an alternative pair (i, B) or an alternative partition
{Aπi, Bπi} and proceed until all alternatives have been investigated. Since its
feasible region represents a polyhedron, (CP) can be solved in polynomial time
by the ellipsoid method (cf. Grötschel et al., 1995) or some specific barrier
method (cf. Nesterov and Nemiroskii, 1994). The objective function value of
any optimal solution to (CP) represents a lower bound on the objective func-
tion value f(S) of any feasible schedule satisfying the added constraints of type
(5) to (9).

Example 3 We consider an example with one intermediate product π and
three operations i = 1, 2, 3 executed on processing units U1, U2, and U3, re-
spectively (cf. Figure 1). Operation 1 with processing time p1 = 3 produces
ρ1π = 2 units of product π, which are consumed by operations 2 and 3 with
processing times p2 = p3 = 2 and requirements ρ2π = ρ3π = −1. The minimum
inventory of product π is Rπ = 0. For simplicity we suppose that a sufficient
amount of raw material is available, that no operators are needed, and that
there are no temporal constraints given (i.e., E = ∅). Since each processing
unit only processes one operation, production resources may be disregarded,
i.e., R = ∅. The objective function to be minimized is the makespan.

✲ U1

(3, 2)

✲
π
✟✟✟✯
❍❍❍❥

U2

(2,−1)

U3

(2,−1)

✲

✲

Legend:

π Storage facility

Ui

(pi, ρiπ)

Processing unit

Figure 1 – Process flow chart

Solving the initial convex program (CP) provides the earliest schedule S,
where all operations are started at time 0. Figure 2 shows the execution time
intervals of operations i ∈ O and the inventory profile ρπ(S, ·) over time for
product π. Schedule S is not inventory-feasible because in interval ]0, 3[ the
inventory of product π is negative.

One way to settle the inventory shortage at the completion time of operation
i = 2 is to choose Aπ2 = {2} and Bπ2 = {1, 3}, and thus we add the constraints
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Figure 2 – Inventory profile arising from relaxing inventory constraints

0 ≤ xπ2
1 ≤ 1, 0 ≤ xπ2

3 ≤ 1, S2 − S1 ≥ 3xπ2
1 − 2, S3 − S2 ≥ 2 − 2xπ2

3 , and
2xπ2

1 − xπ2
3 ≥ 1 to (CP). An optimal solution to the resulting convex program

is xπ2
1 = 1, xπ2

3 = 1, S1 = 0, S2 = 1, S3 = 1. Figure 3 shows the execution time
intervals and the inventory profile for the new schedule S. Since ρπ(S, t) ≥ 0
for all t ≥ 0 and f(S) = 3 = p1, schedule S is optimal.
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Figure 3 – Inventory profile after addition of constraints (6) to (9)

Figure 4 shows the gray-shaded projection of the set S of all feasible sched-
ules onto the two-dimensional subspace of Q3 with S1 = 0. The polyhedron
bounded by the dashed-line edges corresponds to the feasible region of the con-
vex program for Aπ2 = {2} and Bπ2 = {1, 3}. Optimal schedule S is marked
by a solid circle. The line segments joining points (0, 1.33) and (1, 1) and points
(1, 1) and (1.33, 0) contain all minimal points of S.

4 IMPLEMENTATION ISSUES

Assume that the inventory of some product π ∈ P falls below the safety stock
at time t = Si (i ∈ O+

π ) or t = Si + pi (i ∈ O−
π ). To enumerate the sets Aπi

and Bπi we construct a binary tree as follows. Each level of the tree belongs
to one operation j ∈ Oπ. For each j, we branch over the alternatives j ∈ Aπi

and j ∈ Bπi and add the corresponding constraints (6) or (7), (9), as well as
for both alternatives the relaxation

∑

j∈Bπi

ρjπx
πi
j ≥ Rπ −

∑

j∈Aπi∩O−

π

ρjπ −
∑

j∈O+
π \Aπi\Bπi

ρjπ (10)

of constraint (8) to the convex program (CP). Each leaf of the tree corresponds
to one distinct partition {Aπi, Bπi}. We can suspend the enumeration for
operation i as soon as the inventory shortage at time Si or Si + pi is settled,
even if Aπi ∪ Bπi ⊂ Oπ. In the latter case, it may be necessary to resume
the branching process later on if the shortage reappears while dealing with
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Figure 4 – Projection of the feasible region S

other shortages or violations of the resource constraints (1). Since at most
n(n− 1)/2 precedence constraints Sj − Si ≥ pi between operations i and j can
be defined and because for each π ∈ P and each i ∈ Oπ, the construction of
the corresponding sets Aπi and Bπi requires at most |Oπ | steps, the height of
the branch-and-bound tree is of order O(max[n2,

∑

π∈P |Oπ|
2]).

The size of the enumeration tree can be reduced by performing immediate
selection and applying dominance rules. Let dij be the minimum time lag be-
tween operations i and j that is implied by the prescribed temporal constraints
(3) or the added temporal constraints corresponding to the precedence con-
straints (5), inequalities (6), and inequalities (9), where xπi

j is set to be equal
to 0 if j ∈ O−

π and equal to 1, otherwise. The values dij can be computed
by calculating longest path lengths in a network with node set O containing
an arc (i, j) for each prescribed or added temporal constraint. The arcs are
weighted with the respective minimum time lags. Now assume that for some
operation j ∈ Oπ, the addition to set Aπi or Bπi, respectively, leads to a new
temporal constraint Sj − Si ≥ δij . Then the feasible region of (CP) becomes
void if δij + dji > 0. In that case, the alternative set Bπi or Aπi, respectively,
can immediately be selected for operation j.

Now let (S, x) be an optimal solution to (CP) such that schedule S is fea-
sible. We then obtain a feasible schedule S′ with f(S′) ≤ f(S) by

1. moving all operations j ∈ Oπ from Aπi to Bπi for which (6) is binding,

2. moving all operations j ∈ O−
π from Bπi to Aπi for which xπi

j = 1, and

3. moving all operations j ∈ O+
π from Bπi to Aπi for which xπi

j = 0.



Based on this dominance rule, feasible solutions belonging to leaves of the
enumeration tree can be improved and thus the current upper bounds decreased
by performing the above transformations. For the example of Section 3, we
obtain the same optimal schedule S′ = S by moving operation 3 ∈ O−

π with
xπ2
3 = 1 from set Bπ2 to set Aπ2.

5 CONCLUSIONS

In this paper we have considered the scheduling of a production plant operating
in continuous production mode. The problem consists of allocating scarce
production resources over time to the processing of a given set of operations
subject to temporal constraints arising from technological or organizational
requirements and inventory constraints referring to continuous material flows.
The objective is to minimize some convex function in the start times of the
operations like the production makespan. Proceeding from an analysis of the
feasible region, we have developed the enumeration scheme of a relaxation-
based branch-and-bound algorithm for this problem. The procedure iteratively
substitutes the resource and inventory constraints into a disjunction of linear
inequality systems.

Future research in this area will be concerned with the development of
local search algorithms based on the concepts presented and the integration of
additional constraints that are frequently encountered in practice like sequence-
dependent changeover times or alternative recipes.
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