

Project Scheduling with Sequence-Dependent Changeover Times: A Branch-and-Bound Approach

Outline

- 1. Forbidden sets and maximum cuts
- 2. Breaking up forbidden sets
- 3. Schedule-generation scheme
- 4. Computational experience
- 5. Conclusions

Forbidden sets and maximum cuts

- Weak triangle inequality $\vartheta_{hi}^k + p_i + \vartheta_{ij}^k \ge \vartheta_{hj}^k \quad (h, i, j \in V_k)$
 - \triangleright Relation $O_k(S)$ is strict order in set \overline{V}_k
 - $\triangleright \mathcal{A}_k(S)$: longest antichain of $O_k(S)$ = maximum-weight stable set in comparability graph of $O_k(S)$
- Example: $O_k(S)$ may not be interval order

θ^k_{ij}	1	2	3	4
1		0	0	1
2	0		1	0
3	0	1		0
4	1	0	0	

WIOR

• $F \subseteq V$ forbidden set of activities:

$$\sum_{i \in F} r_{ik} > R_k \text{ for some } k \in \mathcal{R}$$

• $A \subseteq V$ active set for given schedule S and resource k:

$$[S_i, S_i + p_i + \vartheta_{ij}^k] \cap [S_j, S_j + p_j + \vartheta_{ji}^k] \neq \emptyset$$
 for all $i, j \in \mathcal{A}$

- \mathcal{A} active set iff \mathcal{A} is antichain in $O_k(S)$
- Requirement $\sum_{i \in \mathcal{A}} r_{ik} \leq \overline{r}_k(S)$
- Schedule S changeover-feasible only if no active set is forbidden
- For each $k \in \mathcal{R}$ find active set $\mathcal{A}_k(S)$ with maximum requirement $\sum_{i \in \mathcal{A}_k(S)} r_{ik}$

How to find an active set with maximum requirement?

- Split nodes $i \in V_k$ of precedence graph $G_k(S)$ into two nodes i' and i''
- Link nodes i' and i'' by arc (i', i'') with lower and upper capacities $l_{i'i''} = u_{i'i''} = r_{ik}$
- Proposition (Möhring 1985). Maximum (0, n + 1)-cuts C in $\overline{G}_k(S)$ are uniformly directed
- Any path from 0 to n + 1 is cut exactly once
- Set $U := \{i \in V_k \mid (i', i'') \in C\}$ is an active set
- Since $l_{0i'} = l_{i''(n+1)} = l_{i''j'} = 0$: $\sum_{i \in U} r_{ik} = \text{capacity of } C = \overline{r}_k(S)$
- Set U coincides with active set $A_k(S)$ of maximum requirement

2 Breaking up forbidden sets

• Given forbidden set $F, B \subset F$ minimal delaying alternative for F if

 $\triangleright F \setminus B$ is not forbidden

 $\triangleright F \setminus B'$ is forbidden for any $B' \subset B$

• Breaking up forbidden set $F = A_k(S)$: Introduce **disjunctive precedence constraint**

$$\min_{j \in B} S_j \ge \min_{i \in A} (S_i + p_i + \vartheta_{ij}^k)$$

between set $A := F \setminus B$ and minimal delaying alternative B

• Minimizing f subject to temporal and disjunctive precedence constraints can be done in $\mathcal{O}(n^2\nu + \min[n,\nu]\overline{d}\nu\log n)$ time

3 Schedule-generation scheme

• Resource relaxation

```
Minimize f(S)

subject to S_0 = 0

S_j - S_i \ge \delta_{ij} \ (\langle i, j \rangle \in E) (PS \infty | temp, s_{ij} | reg)

\overline{r}_k(S) \le R_k \ (k \in \mathcal{R})
```

• Schedule-generation scheme

- 01 Solve resource relaxation: schedule S
- 02 Determine $\mathcal{A}_k(S)$ for all $k \in \mathcal{R}$
- 03 IF no $\mathcal{A}_k(S)$ forbidden THEN stop (*schedule S is feasible *)
- 04 ELSE branch over minimal delaying alternatives B for set $\mathcal{A}_k(S)$
- 05 In each node add disjunctive precedence constraints constraints $\min_{j \in B} S_j \ge \min_{i \in A} (S_i + p_i + \vartheta_{ij}^k)$ to resource relaxation
- 06 Select one enumeration node and GOTO 01

Example (cntd.):

ECCO XV, Lugano

$$(A, B) = (\{5\}, \{1, 2\})$$

$$\mathcal{A}_k(S) = \{5\}$$

4 Computational experience

- Testset: 360 instances with 10, 20, 50, 100 activities and 5 resources each generated by ProGen/max
- $RF = 0.75, RS \in \{0, 0.25, 0.5\}, OS \in \{0.25, 0.5, 0.75\}$
- $\vartheta_{ij}^k \approx 0.25 p_i$, variation coefficient $vc \approx 0.75$
- Objective function: Project duration S_{n+1}
- Pentium PII with 333 MHz and 128 MB RAM
- Branch-and-bound algorithm in C with time limit of 100 seconds

	p_{opt}	p_{uns}	p_{feas}	p_{unk}	Δ_{LB}
n = 10	76.67%	23.33%	0.0%	0.0%	6.34%
n = 20	65.56%	27.78%	6.67%	0.0%	6.59%
n = 50	28.89%	21.11%	40.00%	10.00%	8.84%
n = 100	15.56%	14.44%	44.44%	25.56%	7.07%

5 Conclusions

• Summary

- ▶ Relax resource constraints
- ▶ Checking changeover-feasibility of a schedule: minimum flow problems
- ▶ Maximum cuts provide (forbidden) active sets
- ▶ Break up forbidden sets by disjunctive precedence constraints

• Future Research

- ▶ Local search procedures based on concepts presented
- ▶ Material flows between sites: Cumulative resources and transshipment problems
- - * Replace schedules by strict orders O, starting with $O = \emptyset$
 - * Check change over-feasibility of strict orders O by computing maximum cuts
 - * Expand strict orders O by pairs (i, j): precedence constraints $S_j \geq S_i + p_i + \vartheta_{ij}^k$