A Priority-Rule Based Method for Scheduling in Chemical Batch Production

Christoph Schwindt Rafael Fink. Norbert Trautmann

Clausthal University of Technology, Germany University of Bern, Switzerland

supported by Deutsche Forschungsgemeinschaft under Grant Schw1178/1

IEEM Conference, Singapore, 2-5 Dec 2007

Clausthal University of Technology

Outline

2 Priority-rule based method

- Preprocessing
- Iteration

4 Conclusions

Christoph Schwindt

Scheduling in Chemical Batch Production

< 🗇 🕨

Outline

Scheduling problem

Priority-rule based method

- Preprocessing
- Iteration

3 Performance analysis

4 Conclusions

Clausthal University of Technology

< 🗇 🕨

Christoph Schwindt

Scheduling problem I

Operations and states

- Set \mathcal{O} of operations *i* (process executions) with processing times p_i
- Each operation transforms given amounts of input states into given amounts of output states
- Intermediate states may be chemically instable (perishable products)

Equipment

- Multi-purpose processing units
- Dedicated storage facilities of limited capacity for stocking states

Christoph Schwindt

Scheduling in Chemical Batch Production

Clausthal University of Technology

Scheduling problem II

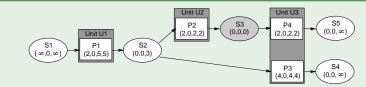
Constraints

- Non-overlapping execution of operations on processing units
- Sequence-dependent changeover times
- Availability of input materials and storage space for output products
- Immediate consumption of perishable products

Scheduling problem

Determine feasible production schedule

- allocation of processing units to operations
- assignment of start times to operations


complying with constraints such that makespan is minimized

Clausthal University of Technology

- ∢ 🗗 🕨

Scheduling problem III

Example (State-task network)

- 3 processing units
- 4 processes, no changeover times
- 4 storage facilities (1 finite intermediate storage)
- 5 states (1 perishable product)
- Primary requirements $\rho_{S4} = 8$, $\rho_{S5} = 2$
- Batching provides 6 operations $(2 \times P1, 1 \times P2, 2 \times P3, 1 \times P4)$

イロト イヨト イヨト イ

Clausthal University of Technology

Preprocessing Iteration

Outline

- 2 Priority-rule based method
 - Preprocessing
 - Iteration

3 Performance analysis

④ Conclusions

Clausthal University of Technology

< 🗇 🕨

Christoph Schwindt

Preprocessing Iteration

Preprocessing I

Preprocessing principle

- Generate time lags δ_{ij} between starts of operations $i, j \in O$ that are satisfied by some optimal schedule
- Translate time lags into operation-on-node network

(1) Operations of same process

- Arrange operations in arbitrary order
 - Operations have to be executed on same processing unit: $\triangleright \delta_{ij} = p_i$ for any two consecutive operations i, j
 - There are alternative processing units:

 $\triangleright \delta_{ij} = 0$ for any two consecutive operations i, j

Christoph Schwindt

Image: A math a math

Preprocessing Iteration

Preprocessing II

(2) Intermediates produced by only one process

 Identify minimum time lags δ_{ij} = p_i between producing operations i and consuming operations j necessary to avoid shortages of input materials

(3) Intermediates consumed by only one process

 Identify maximum time lags -δ_{ji} = p_i between producing operations i and consuming operations j necessary to avoid capacity overflows

(4) Perishable intermediates

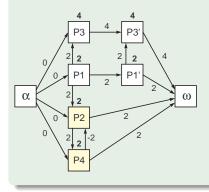

- Associate fictitious storage facility of capacity zero
- Apply (3) in case of unique consuming operation

Image: A math a math

Preprocessing Iteration

Preprocessing III

Example (Operation-on-node network)

- *α*, *ω*: production start, production end
- Longest path length *d_{ij}*: transitive time lag between starts of *i* and *j*
- Strong components $\mathcal{O}' \subseteq \mathcal{O}$ of network: any two nodes $i, j \in \mathcal{O}'$ mutually linked by transitive time lags

Clausthal University of Technology

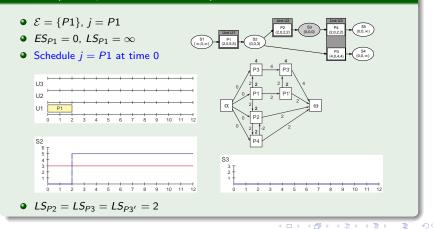
Christoph Schwindt

Preprocessing Iteration

Iteration I

Priority-rule based method

```
initialize \mathcal{C} := \emptyset and put latest start times LS_i := \infty for all i \in \mathcal{O};
while \mathcal{C} \neq \mathcal{O} do
   determine set \mathcal{E} of eligible operations i \in \mathcal{O} \setminus \mathcal{C};
   compute priority value v(i) for all i \in \mathcal{E};
   remove operation j with highest priority value v(j) from set \mathcal{E};
   compute earliest start time ES_i of j; (* disregard storage capacities *)
   if ES_i \leq LS_i then
      schedule j at time ES<sub>i</sub> and put C := C \cup \{j\};
       update latest start times LS_i of operations i \in \mathcal{O} \setminus \mathcal{C};
   else
       perform an unscheduling step;
   end if
end while
```

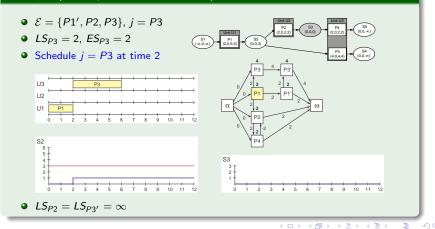

Christoph Schwindt

Clausthal University of Technology

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)

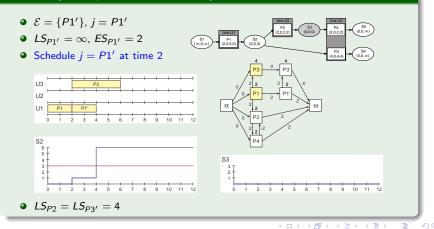

Clausthal University of Technology

Christoph Schwindt

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)

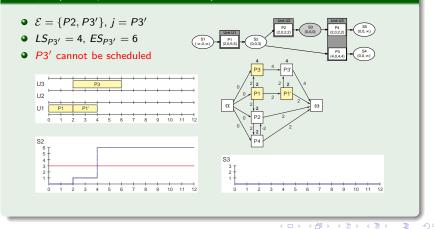

Christoph Schwindt

Clausthal University of Technology

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)


Christoph Schwindt

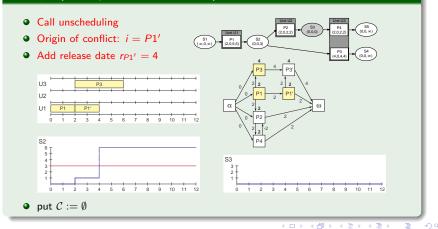
Clausthal University of Technology

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)

Clausthal University of Technology

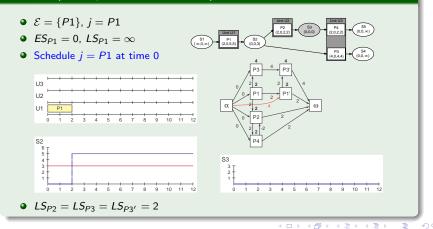

Scheduling in Chemical Batch Production

Christoph Schwindt

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)

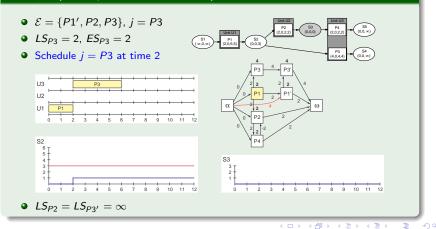

Christoph Schwindt

Clausthal University of Technology

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)

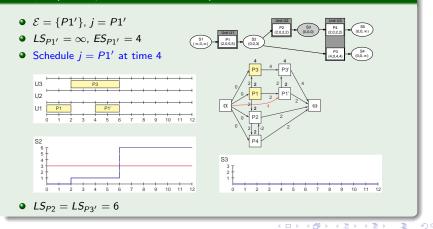

Christoph Schwindt

Clausthal University of Technology

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)

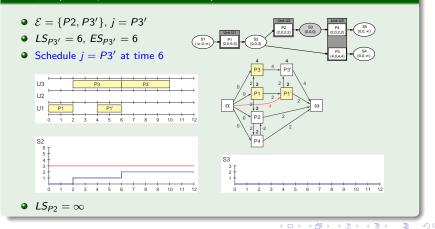

Christoph Schwindt

Clausthal University of Technology

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)

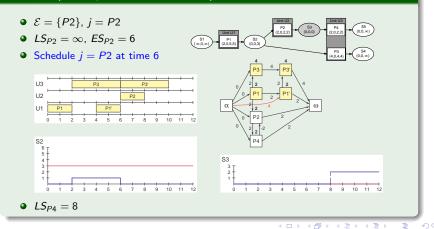

Christoph Schwindt

Clausthal University of Technology

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)

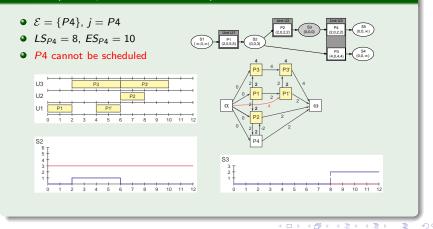

Christoph Schwindt

Clausthal University of Technology

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)

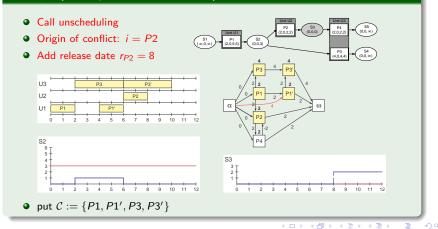

Christoph Schwindt

Clausthal University of Technology

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)

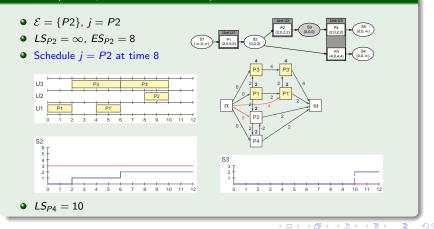

Clausthal University of Technology

Christoph Schwindt

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)

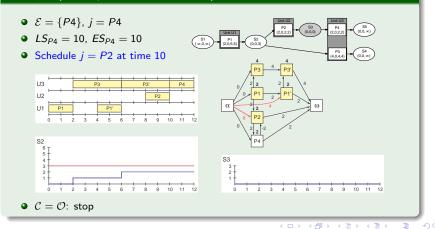

Clausthal University of Technology

Christoph Schwindt

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)


Christoph Schwindt

Clausthal University of Technology

Preprocessing Iteration

Iteration II

Example (Priority-rule based method)

Clausthal University of Technology

Scheduling in Chemical Batch Production

Christoph Schwindt

Outline

Scheduling problem

2 Priority-rule based method

- Preprocessing
- Iteration

Operation Performance analysis

4 Conclusions

Christoph Schwindt

Test bed

Test set

- 22 instances generated by Blömer and Günther (2000)
- Operations obtained by solving MILP batching models

Implementation and test conditions

- Scheduling method implemented as randomized multistart procedure
- Tests performed on 2.08 GHz PC with 1 GB RAM
- Run time limit of 23 sec

Benchmark algorithms

- Time grid heuristic based on monolithic MILP model [BloGue00]
- Truncated branch-and-bound algorithm [NeuSchTra02]
- Two-phase priority-rule based method [SchTra04]

Christoph Schwindt

Clausthal University of Technology

Computational results

Table: Results for instances of Blömer and Günther

Instance	1	2	3	4	5	6	7	8	9	10	11
[BloGue00]	36	42	42	48	44	48	52	48	54	60	68
[NeuSchTra02]	36	38	38	39	41	43	38	39	53	50	66
[SchTra04]	39	47	48	42	41	49	44	43	49	54	64
This paper	36	42	42	39	39	47	40	40	46	49	56
Instance	12	13	14	15	16	17	18	19	20	21	22
[BloGue00]	60	64	66	148	124	112	124	208	184	184	214
[NeuSchTra02]	52	50	57	114	80	91	91	135	100	112	134
[SchTra04]	48	57	61	100	80	92	90	159	97	124	114
This paper	45	50	53	80	66	72	70	<mark>98</mark>	78	82	83

Christoph Schwindt

Clausthal University of Technology

Outline

Scheduling problem

2 Priority-rule based method

- Preprocessing
- Iteration

3 Performance analysis

4 Conclusions

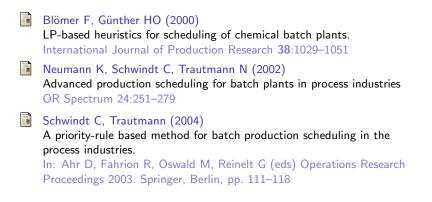
<□> <問> <言> <言> <言> <言> <こ> <</p>

Clausthal University of Technology

Christoph Schwindt

Conclusions

Summary


- New priority-rule based method for batch production scheduling in the process industries
 - Operations-on-node network
 - Capacity-driven latest start times
 - Unscheduling technique
- Very good schedules obtained within short amount of CPU time

Current research

- Expansion of method to case of uncertain processing times, uncertain yields, and unit breakdowns
- Process scheduling of multi-product continuous production plants

Image: A math a math

References

Christoph Schwindt

Clausthal University of Technology

Image: A mathematical states and a mathem