A Closed-Loop Approach to Continuous Process Scheduling

Christoph Schwindt

Sascha Herrmann, Hanno Sagebiel

Clausthal University of Technology

The IEEE International Conference on Industrial Engineering and Engineering Management

Clausthal University of Technology

Christoph Schwindt

Outline

Process scheduling problem

- 2 Decomposition into planning and scheduling
 - Operations planning problem
 - Operations scheduling problem

3 Closed-loop approach

- Basic idea
- Operations re-planning model
- Performance analysis

4 Conclusions

Outline

Process scheduling problem

- 2 Decomposition into planning and scheduling
 - Operations planning problem
 - Operations scheduling problem

3 Closed-loop approach

- Basic idea
- Operations re-planning model
- Performance analysis

4 Conclusions

Problem definition I

Equipment

- Multistage continuous multiproduct production plant
- Multipurpose processing units $u \in U$ operated in continuous mode
- Dedicated storage facilities $s \in S$ of limited capacity

Christoph Schwindt

Problem definition II

Operations and states

- Final products arise from sequences of operations executed on dedicated processing units
- During execution of operation materials continuously flow through processing unit
- Each operation $i \in O$ transforms input states $s \in S^{i-}$ into output states $s \in S^{i+}$
- Sequence-dependent cleaning times ϑ_{ij} on processing units
- Processing times π_i, production rates γ_i, input and output proportions α_{is} (operating conditions), and start times σ_i subject to decision

Problem definition III

Continuous process scheduling problem

Determine production schedule

- operating conditions of operations
- start times of operations

such that

- prescribed bounds for operating conditions are observed
- given primary requirements for final products are satisfied
- no processing unit processes more than one operation at a time
- processing units can be cleaned between consecutive operations
- sufficient amount of input states and sufficient storage space for output states are available during the execution of each operation
- schedule length does not exceed planning horizon
- objective function is optimized (makespan, tardiness, profit)

Outline

Process scheduling problem

- 2 Decomposition into planning and scheduling
 - Operations planning problem
 - Operations scheduling problem

3 Closed-loop approach

- Basic idea
- Operations re-planning model
- Performance analysis

4 Conclusions

Decomposition into planning and scheduling

Operations planning problem

Determine operating conditions of operations subject to

- bounds for operating conditions
- constraints on final inventory levels
- constraints anticipating storage-capacity restrictions

Operations scheduling problem

Determine start times of operations subject to

- limited availability of processing units, input states, and storage space for output products
- sequence-dependent cleaning times
- upper bound on schedule length

Christoph Schwindt

Basic NLP planning model

Model (OP)

$$\begin{array}{lll} \text{Min.} & f^{p}(\alpha, \gamma, \pi) \\ \text{s.t.} & \sum\limits_{s \in \mathcal{S}^{i+}} \alpha_{is} = -\sum\limits_{s \in \mathcal{S}^{i-}} \alpha_{is} = 1 & (i \in \mathcal{O}) \\ & \underline{\alpha}_{is} \leq \alpha_{is} \leq \overline{\alpha}_{is} & (i \in \mathcal{O}; s \in \mathcal{S}^{i}) \\ & \underline{\gamma}_{i} \leq \gamma_{i} \leq \overline{\gamma}_{i} & (i \in \mathcal{O}) \\ & \underline{\pi}_{i} \leq \pi_{i} \leq \overline{\pi}_{i} & (i \in \mathcal{O}) \\ & \delta_{s} \leq \rho_{s}^{0} + \sum\limits_{i \in \mathcal{O}^{s}} \alpha_{is} \gamma_{i} \pi_{i} \leq \overline{\rho}_{s} & (s \in \mathcal{S}) \\ & \alpha_{is} \gamma_{i} = -\alpha_{js} \gamma_{j} & (s \in \mathcal{S}; i \in \mathcal{O}^{s+}; j \in \mathcal{O}^{s-}) \\ & \alpha_{is} \gamma_{i} \max_{j,k \in \mathcal{O}^{s-}} \vartheta_{jk} \leq \overline{\rho}_{s} & (s \in \mathcal{S} : \overline{\rho}_{s} > 0; i \in \mathcal{O}^{s+}) \end{array}$$

Clausthal University of Technology

Christoph Schwindt

Basic NLP planning model

Model (OP)

$$\begin{array}{ll} \text{Min.} \quad \tilde{f}^{p}(\alpha,\gamma,\pi,\zeta) = \|\zeta^{1} + \zeta^{2}\|_{1} + \varepsilon f^{p}(\alpha,\gamma,\pi) \\ \text{s.t.} \quad \sum\limits_{s \in \mathcal{S}^{i+}} \alpha_{is} = -\sum\limits_{s \in \mathcal{S}^{i-}} \alpha_{is} = 1 \quad (i \in \mathcal{O}) \\ \underline{\alpha}_{is} \leq \alpha_{is} \leq \overline{\alpha}_{is} \qquad (i \in \mathcal{O}; s \in \mathcal{S}^{i}) \\ \underline{\gamma}_{i} \leq \gamma_{i} \leq \overline{\gamma}_{i} \qquad (i \in \mathcal{O}) \\ \underline{\pi}_{i} \leq \pi_{i} \leq \overline{\pi}_{i} \qquad (i \in \mathcal{O}) \\ \delta_{s} \leq \rho_{s}^{0} + \sum\limits_{i \in \mathcal{O}^{s}} \alpha_{is} \gamma_{i} \pi_{i} \leq \overline{\rho}_{s} \quad (s \in \mathcal{S}) \\ \alpha_{is} \gamma_{i} = -\alpha_{js} \gamma_{j} + \zeta_{ijs}^{1} - \zeta_{ijs}^{2} \quad (s \in \mathcal{S}; i \in \mathcal{O}^{s+}; j \in \mathcal{O}^{s-}) \\ \alpha_{is} \gamma_{i} \max_{j,k \in \mathcal{O}^{s-}} \vartheta_{jk} \leq \overline{\rho}_{s} \qquad (s \in \mathcal{S}; i \in \mathcal{O}^{s+}; j \in \mathcal{O}^{s-}) \\ \zeta_{ijs}^{1}, \zeta_{ijs}^{2} \geq 0 \qquad (s \in \mathcal{S}; i \in \mathcal{O}^{s+}; j \in \mathcal{O}^{s-}) \end{array}$$

Clausthal University of Technology

Christoph Schwindt

Example

Example (Make-and-mix plant)

Operating conditions for $f^{p}(\alpha, \gamma, \pi) = \pi_{1} + \pi_{2} + \pi_{3}$

i = 1:
$$\gamma_1 = 0.83$$
 $\pi_1 = 100.0$ $\alpha = 0.6$
i = 2: $\gamma_2 = 0.5$ $\pi_2 = 33.3$
i = 3: $\gamma_3 = 1.0$ $\pi_3 = 100.0$

Christoph Schwindt

Clausthal University of Technology

Operations scheduling problem I

Solution procedures

- Branch-and-bound method: Neumann K, S., Trautmann N (2005)
- Priority-rule based method: Herrmann S, S. (2007)
- Exact MILP model ($OS(\alpha, \gamma, \pi)$): Herrmann S, S. (2008)

Proposition (Feasibility of scheduling problem)

If all material flows are acyclic and $\zeta^1 + \zeta^2 = 0$, then there exists a feasible solution to the operations scheduling problem, which can be obtained in polynomial time.

Clausthal University of Technology

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Operations scheduling problem II

Clausthal University of Technology

Christoph Schwindt

Outline

Process scheduling problem

- 2 Decomposition into planning and scheduling
 - Operations planning problem
 - Operations scheduling problem

Closed-loop approach

- Basic idea
- Operations re-planning model
- Performance analysis

4 Conclusions

Christoph Schwindt Continuous Process Scheduling

Basic idea I

Motivation

- Maximum inventory levels depend on operations sequence
- To facilitate generation of feasible schedule, planning model (*OP*) aligns rates $|\alpha_{is}\gamma_i|$ of producing and consuming operations
- Production rates generally unnecessarily small

Christoph Schwindt

Clausthal University of Technology

Basic idea II

Basic idea

- Return to planning phase after scheduling
- Fix sequence of start and completion events and replace alignment of rates by exact material-availability and storage-capacity constraints in planning problem
- Inventory levels at support points can be expressed as sums of amounts produced and consumed by active sets (antichains)
- Associate decision variable π_A with each active set A providing its duration
- Processing times π_i and start times σ_i uniquely given by sequence and durations of active sets

Active sets I

Example (cont'd)

Clausthal University of Technology

э

A (1) > A (2) > A

Christoph Schwindt

Active sets II

Example (cont'd)

Clausthal University of Technology

< 🗇 🕨

Christoph Schwindt

Operations re-planning model

Model $(ORP(\sigma'))$

$$\begin{array}{ll} \text{Min. } f(\alpha,\gamma,\pi,\sigma) \\ \text{s.t. } \sum\limits_{s\in\mathcal{S}^{i+}} \alpha_{is} = -\sum\limits_{s\in\mathcal{S}^{i-}} \alpha_{is} = 1 & (i\in\mathcal{O}) \\ & \underline{\alpha}_{is} \leq \alpha_{is} \leq \overline{\alpha}_{is} & (i\in\mathcal{O};s\in\mathcal{S}^{i}) \\ & \underline{\gamma}_{i} \leq \gamma_{i} \leq \overline{\gamma}_{i} & (i\in\mathcal{O}) \\ & \underline{\pi}_{i} \leq \pi_{i} \leq \overline{\pi}_{i} & (i\in\mathcal{O}) \\ & \overline{\delta}_{s} \leq \rho_{s}^{0} + \sum\limits_{i\in\mathcal{O}^{s}} \alpha_{is}\gamma_{i}\pi_{i} \leq \overline{\rho}_{s} & (s\in\mathcal{S}) \\ & \pi_{i} = \sum\limits_{\mathcal{A}\in\mathcal{B}^{s}(\nu_{s}):i\in\mathcal{A}} \pi_{\mathcal{A}} & (i\in\mathcal{O};s\in\mathcal{S}^{i}) \\ & \sigma_{i} = \sum\limits_{\mathcal{A}\in\mathcal{B}^{s}(\mu)} \pi_{\mathcal{A}} & (s\in\mathcal{S};\mu=1,\ldots,\nu^{s}-1;i\in\mathcal{A}_{\mu+1}^{s}\backslash\mathcal{A}_{\mu}^{s}) \\ & 0 \leq \rho_{s}^{0} + \sum\limits_{\mathcal{A}\in\mathcal{B}^{s}(\mu)} \sum\limits_{i\in\mathcal{A}} \alpha_{is}\gamma_{i}\pi_{\mathcal{A}} \leq \overline{\rho}_{s} & (s\in\mathcal{S};\mu=1,\ldots,\nu^{s}-1) \\ & \sigma_{j} - \sigma_{i} \geq \pi_{i} + \vartheta_{ij} & (u\in\mathcal{U};i,j\in\mathcal{O}^{u}:\sigma_{j}'\geq\sigma_{i}') \\ & \sigma_{i} + \pi_{i} \leq \tau & (i\in\mathcal{O}) \\ & \pi_{\mathcal{A}} \geq 0 & (s\in\mathcal{S};\mathcal{A}\in\mathcal{B}^{s}(\nu_{s})) \end{array}$$

・ロト・日本・日本・日本・ 日本 うらの

Clausthal University of Technology

Christoph Schwindt

Closed-loop method I

Closed-loop method

```
Input: process scheduling problem
Output: feasible production schedule (\alpha, \gamma, \pi, \sigma')
```

```
determine initial operating conditions (\alpha, \gamma, \pi) by solving basic planning model (OP);
```

repeat

compute schedule σ' by solving resulting scheduling problem ($\mathit{OS}(\alpha,\gamma,\pi));$

re-optimize operating conditions (α, γ, π) with operations re-planning planning model $(ORP(\sigma'))$;

until fixed point $(\alpha, \gamma, \pi, \sigma')$ has been reached;

return feasible production schedule ($\alpha, \gamma, \pi, \sigma'$);

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Closed-loop method II

Proposition (Monotonicity and finiteness)

Provided that problems (OP) and $(OS(\alpha, \gamma, \pi))$ are feasible, the sequence of generated objective function values $f(\alpha, \gamma, \pi, \sigma')$ is nonincreasing. The closed-loop method attains a fixed point after a finite number of iterations.

Proof.

The monotonicity follows from the feasibility of the preceding production schedule $(\alpha, \gamma, \pi, \sigma')$ with respect to $(ORP(\sigma'))$. The feasible region of $(ORP(\sigma'))$ only depends on the sequence of active sets A_{μ} induced by σ' . In conjunction with the monotonicity this provides the finiteness.

Image: A math a math

Christoph Schwindt

Initial schedule after scheduling

くしゃ (四・ (川・ (日・ (日・)))

Clausthal University of Technology

Christoph Schwindt

Second schedule after re-planning

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - 釣�?

Clausthal University of Technology

Christoph Schwindt

Third schedule after scheduling

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - つへぐ

Clausthal University of Technology

Christoph Schwindt

Fourth and final schedule after re-planning / scheduling

◆□▶ ◆□▶ ◆吾▶ ◆吾▶ 善吾 ∽のへで

Clausthal University of Technology

Christoph Schwindt

Performance analysis I

Test bed: FMCG case study

- Case study from FMCG industry (Méndez and Cerdá 2002)
- Objective makespan minimization
- 10 instances with varying primary requirements for final products
- Planning models solved under GAMS using NLP solver CONOPT3
- Scheduling model solved under GAMS using MILP solver Cplex 11.0
- Lower bounds computed with (relaxation of) MILP model by Méndez and Cerdá 2002, time limit 3600.0 sec
- Pentium IV PC, 3.8 GHz, 2 GB RAM

< 17 ▶

Christoph Schwindt

Performance analysis II

Computational results: FMCG case study

d_1-d_5	<i>d</i> ₆ – <i>d</i> ₁₀	$d_{11} - d_{15}$	C_{\max}^{ini}	C_{\max}^{fin}	n _{it}	t_{cpu} [sec]	C_{\max}^{milp}
Orig	ginal der	mands	224.9	73.8	4	60.8	71.3
50	50	50	112.8	77.9	5	126.5	77.8
100	100	100	213.7	153.3	6	166.0	151.7
150	150	150	367.2	229.5	5	199.9	225.9
50	100	150	277.7	225.9	4	112.1	225.9
50	150	100	244.6	153.3	6	227.0	151.7
100	50	150	258.2	225.9	4	71.2	225.9
100	150	50	207.1	188.6	4	108.6	188.6
150	50	100	276.9	151.7	6	176.1	151.7
150	100	50	276.9	192.6	4	46.4	188.6

< 🗇 > < 🖻

Christoph Schwindt

Performance analysis III

Test bed: Kallrath case study

- Case study of Kallrath 2002 adapted to continuous production mode
- Objective makespan minimization
- 8 instances with varying primary requirements for final products
- Planning models solved under GAMS using NLP solver CONOPT3
- Scheduling model solved under GAMS using MILP solver Cplex 11.0
- Lower bounds computed with (tightened version of) MILP model by Giannelos and Georgiadis 2002, time limit 3600.0 sec
- Pentium IV PC, 3.8 GHz, 2 GB RAM

Performance analysis IV

Computational results: Kallrath case study

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
15 15 15 15 15 31.7 26.7 4 29.7 26.8 20 20 20 20 20 42.3 32.7 6 98.6 37.6 25 25 25 25 25 52.9 42.5 4 37.5 59.6 30 30 20 20 40 65.2 47.7 6 73.8 52.2 30 30 20 30 30 65.2 47.7 7 81.6 48.1 30 40 20 40 30 78.7 55.2 4 33.6 46.9 40 20 20 40 56.8 47.0 4 33.6 46.9 40 30 20 30 40 72.5 54.1 5 47.9 46.9	d_{15}	d_{16}	d_{17}	d_{18}	d_{19}	$C_{\max}^{\prime n \prime}$	C_{\max}^{tin}	n _{it}	t _{cpu} [sec]	C_{\max}^{milp}
20 20 20 20 42.3 32.7 6 98.6 37.6 25 25 25 25 25 52.9 42.5 4 37.5 59.6 30 30 20 20 40 65.2 47.7 6 73.8 52.2 30 30 20 30 30 65.2 47.7 7 81.6 48.1 30 40 20 40 30 78.7 55.2 4 34.5 57.8 40 20 20 40 56.8 47.0 4 33.6 46.9 40 30 20 30 40 72.5 54.1 5 47.9 46.9	15	15	15	15	15	31.7	26.7	4	29.7	26.8
25 25 25 25 25 52.9 42.5 4 37.5 59.6 30 30 20 20 40 65.2 47.7 6 73.8 52.2 30 30 20 30 30 65.2 47.7 7 81.6 48.1 30 40 20 40 30 78.7 55.2 4 34.5 57.8 40 20 20 20 40 56.8 47.0 4 33.6 46.9 40 30 20 30 40 72.5 54.1 5 47.9 46.9	20	20	20	20	20	42.3	32.7	6	98.6	37.6
30 30 20 20 40 65.2 47.7 6 73.8 52.2 30 30 20 30 30 65.2 47.7 7 81.6 48.1 30 40 20 40 30 78.7 55.2 4 34.5 57.8 40 20 20 20 40 56.8 47.0 4 33.6 46.9 40 30 20 30 40 72.5 54.1 5 47.9 46.9	25	25	25	25	25	52.9	42.5	4	37.5	59.6
30 30 20 30 30 65.2 47.7 7 81.6 48.1 30 40 20 40 30 78.7 55.2 4 34.5 57.8 40 20 20 20 40 56.8 47.0 4 33.6 46.9 40 30 20 30 40 72.5 54.1 5 47.9 46.9	30	30	20	20	40	65.2	47.7	6	73.8	52.2
30 40 20 40 30 78.7 55.2 4 34.5 57.8 40 20 20 20 40 56.8 47.0 4 33.6 46.9 40 30 20 30 40 72.5 54.1 5 47.9 46.9	30	30	20	30	30	65.2	47.7	7	81.6	48.1
40 20 20 20 40 56.8 47.0 4 33.6 46.9 40 30 20 30 40 72.5 54.1 5 47.9 46.9	30	40	20	40	30	78.7	55.2	4	34.5	57.8
40 30 20 30 40 72.5 54.1 5 47.9 46.9	40	20	20	20	40	56.8	47.0	4	33.6	46.9
	40	30	20	30	40	72.5	54.1	5	47.9	46.9

A 🖓

Christoph Schwindt

Outline

Process scheduling problem

- 2 Decomposition into planning and scheduling
 - Operations planning problem
 - Operations scheduling problem

3 Closed-loop approach

- Basic idea
- Operations re-planning model
- Performance analysis

4 Conclusions

Christoph Schwindt

Conclusions

Summary

- Decomposition approach for process scheduling of continuous multiproduct plants
- Planning problem: determine operating conditions of operations
- Scheduling problem: schedule operations on processing units
- Closed-loop method: re-optimize operating conditions subject to constraints on active sets
- Fixed point reached in finite number of iterations
- Good schedules within reasonable amount of time, high reliability

Future research

- Tests for alternative objective functions (revenues, profit, tardiness)
- Metaheuristic search procedure performing perturbation steps after convergence

Image: A math a math

References I

Giannelos NF, Georgiadis MC (2002) A novel event-driven formulation for short-term scheduling of multipurpose continuous process. Industrial & Engineering Chemistry Research 41:2431–2439
Herrmann S, Schwindt C (2007) Planning and scheduling continuous operations in the process industries. In: Günther H-O, Mattfeld DC, Suhl L, (eds.), Management logistischer Netzwerke. Physica, Heidelberg, pp. 279–299
Herrmann S, Schwindt C (2008) A heuristic for the short-term planning of multi-purpose continuous plants. 18th European Symposium on Computer Aided Process Engineering. Elsevier, Amsterdam, Paper FP00309
Kallrath J (2002) Planning and scheduling in the process industry.

OR Spectrum 24:219-250

Christoph Schwindt

・ロン ・回 と ・ ヨン・

References II

Mendéz CA, Cerdá J (2002)

An efficient MILP continuous-time formulation for short-term scheduling of multiproduct continuous plants.

Computers & Chemical Engineering 26:687-695

Neumann K, Schwindt C, Trautmann N (2005)

Scheduling of continuous and discontinuous material flows with intermediate storage restrictions.

European Journal of Operational Research 165:495-509

Christoph Schwindt

Backup: The scheduling model

Model ($OS(\alpha, \gamma, \pi)$)

$$\begin{array}{lll} \text{Min. } f(\alpha,\gamma,\pi,\sigma) \\ \text{s.t. } 0 \leq \sigma_i \leq \tau - \pi_i & (i \in \mathcal{O}) \\ \pi_i + \vartheta_{ij} - \tau(1 - \mathbf{z}_{ij}) \leq \sigma_j - \sigma_i \leq -\pi_j - \vartheta_{ji} + \tau \mathbf{z}_{ij} & (u \in \mathcal{U}; i, j \in \mathcal{O}^u : i < j) \\ 0 \leq x_{ijs} \leq 1 & (s \in \mathcal{S}; i, j \in \mathcal{O}^s) \\ x_{ijs} \geq y_{ijs} & (s \in \mathcal{S}; i \in \mathcal{O}^{s-}; j \in \mathcal{O}^s) \\ \pi_i - \tau(1 - y_{ijs}) \leq \sigma_j + \pi_j - \sigma_i \leq \pi_i x_{ijs} + \tau y_{ijs} & (s \in \mathcal{S}; i \in \mathcal{O}^{s-}; j \in \mathcal{O}^{s-}) \\ \pi_i - \tau(1 - y_{ijs}) \leq \sigma_j - \sigma_i \leq \pi_i x_{ijs} + \tau y_{ijs} & (s \in \mathcal{S}; i \in \mathcal{O}^{s-}; j \in \mathcal{O}^{s-}) \\ \pi_i x_{ijs} - \tau y_{ijs} \leq \sigma_j - \sigma_i \leq \pi(1 - y_{ijs}) & (s \in \mathcal{S}; i \in \mathcal{O}^{s+}; j \in \mathcal{O}^{s-}) \\ \pi_i x_{ijs} - \tau y_{ijs} \leq \sigma_j - \sigma_i \leq \tau(1 - y_{ijs}) & (s \in \mathcal{S}; i \in \mathcal{O}^{s+}; j \in \mathcal{O}^{s-}) \\ \pi_i x_{ijs} - \tau y_{ijs} \leq \sigma_j - \sigma_i \leq \tau(1 - y_{ijs}) & (s \in \mathcal{S}; i \in \mathcal{O}^{s+}; j \in \mathcal{O}^{s-}) \\ \rho_s^0 + \sum_{i \in \mathcal{O}^s} \alpha_{is} \gamma_i \pi_i x_{ijs} \geq 0 & (s \in \mathcal{S}; i \in \mathcal{O}^s) \\ y_{ijs} \in \{0, 1\} & (s \in \mathcal{S}; i, j \in \mathcal{O}^s) \\ z_{ij} \in \{0, 1\} & (s \in \mathcal{O}^s) \\ \end{array}$$

Clausthal University of Technology

Christoph Schwindt