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Abstract. In this paper we propose a branch–and–bound algorithm for the inventory–
constrained project duration problem where minimum and maximum time lags between
project events are prescribed. Any event may take items from or add items to one or several
storages which are represented by cumulative resources. For each resource a minimum inven-
tory has to be secured and a maximum inventory must not be exceeded at any point in time.
This problem represents a generalization of several well–known resource–constrained project
scheduling problems and is of great relevance to process flow scheduling. Our approach relies
on the basic concepts devised by Neumann (1999). We perform an enumeration of alter-
natives to avoid stock shortage and stock excess in the optimal solution to the inventory–
unconstrained problem. Performing a depth–first search, the search space is stepwise reduced
by introducing disjunctive precedence constraints between disjoint sets of events. A feasible
solution has been attained if all inventory conflicts are resolved squaring with the temporal
constraints between the project events. The search space of an enumeration node represents
the connected intersection of unions of polyhedral cones with the polyhedron of time–feasible
solutions. The corresponding optimization problems are solved by a pseudo–polynomial fix–
point algorithm which exploits the existence of a unique minimal point. The enumeration
tree is pruned by lower bounds and fathoming rules. The algorithm can easily be adapted
to the minimization of further regular objective functions like mean weighted flow time or
maximum lateness. Finally, we sketch how the procedure can be truncated to an efficient
heuristic.

Key words: Project management, scheduling, storages, temporal constraints, branch–and–
bound.

1 Introduction

We consider a project for which n events numbered consecutively from 1 to n have been
defined. Additionally we introduce the events 0 and n + 1 which represent the beginning
and the termination of the project, respectively. Thus, V = {0, 1, . . . , n, n + 1} is the set
of all project events. By R we denote the set of storages or cumulative resources. For
each resource k ∈ R we suppose a minimum inventory Rk and a maximum inventory Rk

to be given. Rk may be regarded as the safety stock, Rk as the item–capacity of storage
k. Any event is associated with demands rik for resources k ∈ R termed replenishment
if positive and consumption if negative. Let Si ≥ 0 be the time of occurrence of event i
and let S = (S0, S1, . . . , Sn, Sn+1) be the project schedule which has to be determined. By
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A(S, t) := {i ∈ V | Si ≤ t} we denote the active set of events which occurred by time t.
Then rk(S, t) :=

∑

i∈A(S,t) rik is the inventory of resource k at time t if the project is executed

according to schedule S. Between the occurrences of events i and j minimum time lags dmin
ij

and maximum time lags dmax
ij may be prescribed. Without loss of generality we assume all

time lags to be integers. As pointed out in Neumann (1999), the relationships between the
project events can be represented by a network where the events coincide with the nodes and
the temporal constraints are represented by arcs 〈i, j〉 with weight δij = dmin

ij and arcs 〈j, i〉
with weight δji = −dmax

ij , respectively. By D = (dij)i,j∈V we denote the matrix of longest
path lengths dij from nodes i to nodes j. D represents the transitive closure of all minimum
and maximum time lags between events i, j ∈ V . With E being the set of arcs of the resulting
network, the project duration problem (P) can be stated as follows:

(P)























Min. Sn+1 (1)

s.t. S0 = 0 (2)

Sj − Si ≥ δij (〈i, j〉 ∈ E) (3)

Rk ≤ rk(S, t) ≤ Rk (k ∈ R, t ≥ 0) (4)

Problem (1), (2), and (3) corresponds to the resource relaxation (PT ) of (P). Solutions to
(PT ) are called time–feasible schedules, solutions to (P) are referred to as feasible schedules.
By ST and S we denote the set of all time–feasible and all feasible schedules, respectively.

In the following, we discuss the decomposition of (P) into a sequencing and a scheduling
problem. The sequencing problem SEQUENCE consists of the determination of a nonempty
set of schedules Q including at least one feasible schedule S ∈ S which solves the correspond-
ing project duration problem on Q to optimality. The scheduling problem SCHEDULE(Q) is
the problem to find a schedule S ∈ S ∩Q minimizing the objective function on Q. The basic
principle of our branch–and–bound algorithm is to enumerate a finite number σ of solutions
Q1, . . . ,Qσ to SEQUENCE with Qρ ⊆ ST for all ρ = 1, . . . , σ and

⋃σ
ρ=1Qρ ⊇ S. Since a

feasible schedule S+ is optimal exactly if

S+
n+1 = min

ρ=1,... ,σ
min
S∈Qρ

Sn+1,

solving the corresponding scheduling problems SCHEDULE(Qρ) (ρ = 1, . . . , σ) yields an
optimal schedule exactly if the feasible region S is nonempty.

In order to limit the size of the enumeration tree, the covering {Q1, . . . ,Qσ} of S should in-
clude as few setsQρ as possible. On the other hand, the scheduling problems SCHEDULE(Qρ)
should be solved efficiently.

In Sections 2 and 3 we devise algorithms for the sequencing and the scheduling problem,
respectively. Solutions Q to SEQUENCE represent connected unions of convex polyhedra
whose number generally grows exponentially in the number n of project events. Neverthe-
less, the corresponding problems SCHEDULE(Q) can be solved by an algorithm whose time
complexity is linear in n and in an upper bound d on the minimum project duration. In
Section 4 we discuss the branching strategy, lower bounds on the minimum project duration,
and fathoming rules for a further pruning of the enumeration tree. Section 5 is devoted to the
truncation of the proposed branch–and–bound algorithm to a filtered beam search heuristic.
Section 6 deals with an experimental performance analysis.
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2 Solving the Sequencing Problem

For the basic concepts of (minimal) lacking sets and (minimal) exceeding sets of events we
refer to Neumann (1999). Recall that a schedule S observes the inventory constraints exactly
if (1) for all minimal lacking sets F at least one event j ∈ F with rjk < 0 does not occur
before an event i ∈ V \F which replenishes resource k and (2) for all minimal exceeding sets
F at least one event j ∈ F with rjk > 0 does not occur before an event i ∈ V \ F which
consumes resource k.

Now let F be a lacking (exceeding) set. An inclusion–minimal set B with

∑

i∈F\B

rik ≥ Rk (
∑

i∈F\B

rik ≤ Rk) for all k ∈ R (5)

is termed minimal delaying alternative for F . The concept of minimal delaying alternatives
has been used by several authors in the field of project scheduling subject to renewable
resource constraints (e.g. by Demeulemeester and Herroelen 1992, Icmeli and Erengüç 1996,
De Reyck and Herroelen 1998, or Schwindt 1998). The delay of events j ∈ B up to the
occurrence of a replenishing (consuming) event i ∈ V \ F resolves all inventory conflicts
induced by minimal lacking or exceeding sets F ′, respectively, with F ′∩B 6= ∅ and i ∈ V \F ′.
The number of all minimal delaying alternatives B for a lacking or exceeding set F may be
exponential in the cardinality of F . It can be computed starting with the one–element
subsets B of F which are augmented (e.g. by events with higher number, in order to avoid
redundancy) until condition (5) is satisfied. B is inclusion–minimal exactly if no event j ∈ B
can be removed such that (5) still holds.

The question to be answered next is how to select event i up to whose occurrence all events
j ∈ B have to be shifted. One possibility is to enumerate the replenishing (consuming) events
i ∈ V \ F . Since in general it is not possible to decide upon the constraints Sj ≥ Si (j ∈ B)
which lead to an optimal schedule, all events i ∈ V \ F have to be examined separately.
In what follows, we propose the use of disjunctive precedence constraints A ≺ B between
disjoint sets A ⊆ V \ F and B which consider all delaying events i simultaneously:

min
j∈B

Sj ≥ min
i∈A

Si (6)

with A := {i ∈ V \ F | rik > 0} for lacking F and A := {i ∈ V \ F | rik < 0}, otherwise.

Our algorithm for computing a solution Q to SEQUENCE is based on the resource relaxation
(PT ). We initialize Q by ST . If Q is empty, then stop: no feasible solution could be
found. Otherwise, we determine an optimal solution S+ to SCHEDULE(Q). If S+ obeys the
inventory constraints, then stop: a feasible solution has been determined. Else, we determine
the earliest point in time t at which an inventory conflict occurs and compute a minimal
delaying alternative B to A(S+, t). Q is cut by the disjunctive precedence constraint (6).
These steps are repeated until either a feasible solution has been found or the procedure
terminates since the search space Q has been restricted to void.

How to solve the scheduling problems SCHEDULE(Q) will be discussed in the next section.
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3 Solving the Scheduling Problem

Let Q be given by ν disjunctive precedence constraints Aµ ≺ Bµ with µ = 1, . . . , ν.
SCHEDULE(Q) can be stated as follows:

Min. Sn+1

s.t. S0 = 0

Sj − Si ≥ δij (〈i, j〉 ∈ E)

minj∈Bµ
Sj ≥ mini∈Aµ

Si (µ = 1, . . . , ν)























(7)

The algorithm for solving (7) requires an upper bound d on the minimum project duration.

Proposition 1.

Let the feasible region S of (P) be nonempty. Then

d =
∑

j∈V

max{0, max
〈i,j〉∈E

δij} (8)

represents an upper bound on the minimum project duration.

SCHEDULE(Q) can be solved as follows. Starting with the unique minimal point ES =
(d0i)i∈V of ST , we check whether or not the disjunctive precedence constraints Aµ ≺ Bµ

(µ = 1, . . . , ν) are met. Assume that the current schedule S+ does not satisfy Aµ ≺ Bµ.
Then any schedule S ∈ Q observes the inequalities Sj ≥ mini∈Aµ

S+
i such that S+

j can
be increased up to value mini∈Aµ

S+
i for all j ∈ Bµ. Subsequently, we restore the time–

feasibility of S+ by setting S+
h := max{S+

h ,maxj∈Bµ
(S+

j + djh)} for all h ∈ V . These steps
are performed until either all disjunctive precedence constraints are satisfied or S+

n+1 exceeds

the upper bound d. In the latter case, Q has been proved to be empty. The following theorem
establishes the correctness and provides the time complexity of this approach.

Theorem 1.

Let σ : IRn+2
≥0 → IR

n+2
≥0 be the mapping with

σ(S) =

(

max

{

max
i∈V

(Si + dij), max
µ=1,... ,ν

j∈Bµ

min
i∈Aµ

Si

})

j∈V

.

1. σ possesses a fixpoint exactly if Q 6= ∅. There is only one fixpoint S+ with S+
0 = 0. S+

represents the unique minimal point of Q.

2. For Q 6= ∅, the fixpoint S+ with S+
0 = 0 coincides with the limit of the sequence (Sλ)

with S1 = ES and Sλ+1 = σ(Sλ) for λ ∈ ZZ>0. S
+ satisfies S+

n+1 ≤ d.

3. For Q 6= ∅, there is a κ ≤ nd with σ(Sλ) = Sλ = S+ for all λ ≥ κ.

The proof (cf. Schwindt 1998) relies on the monotonicity of the sequence of schedules Sλ

and the existence of a unique minimal point S+ of Q. Notice that despite the pseudo–
polynomial time complexity, the running time of the algorithm is independent of the scaling
of the time lags. Moreover, the algorithm solves SCHEDULE(Q) for arbitrary regular (i.e.
componentwise nondecreasing) objective functions f(S).

4



4 Branching Strategy, Lower Bounds, and Fathoming

Rules

The generation scheme of our branch–and–bound procedure is based on the algorithm for
the sequencing problem SEQUENCE described in Section 2. Let Q(p) denote the search
space belonging to enumeration node p at level ν. Q(p) is given by the conjunction of
the temporal constraints (2) and (3) and all disjunctive precedence constraints Aµ ≺ Bµ

(µ = 1. . . . , ν) defined along the path from the root at level 0 to node p. The enumeration
is performed according to a depth–first search strategy. Initializing d as given by (8), we
start with schedule S+ = ES and look for the earliest point in time t for which A(S+, t)
is lacking or exceeding. If S+ is feasible, we set the current upper bound d to S+

n+1 and
backtrack. Otherwise, we define a child node p′ for each minimal delaying alternative B to
A(S+, t) and either determine optimal solutions Sp′ to the corresponding scheduling problems
SCHEDULE(Q(p′)) or establish Q(p′) = ∅. Instead of ES, the fix–point algorithm may start

with S+. In the latter case or if Sp′

n+1 > d, node p′ is removed from the search tree. If all
nodes p′ have been deleted, we perform backtracking. Otherwise, we branch from one of the
newly generated nodes p′ which minimizes a nonnegative linear combination of Sp′

n+1 and the
total inventory shortage and excess over time

ϕ(p′) =
∑

k∈R

∫ d

0

max{0, rk(S
p′, t)− Rk, Rk − rk(S

p′, t)}dt (9)

and set S+ := Sp′ and p := p′. Proceeding with the check of resource–feasibility for S+, these
steps are repeated until the feasible region has been completely explored.

The reason why (9) is taken into account when selecting the next enumeration node is that
on the one hand there are generally several nodes p′ with minimum objective function value
Sp′

n+1 and on the other hand ϕ(p′) indicates the ‘distance’ of Sp′ from feasibility. Note that
Sp′ is feasible exactly if ϕ(p′) = 0.

In order to restrict the number of nodes which have to be explored during the enumeration,
we use lower bounds and fathoming rules. Since Q(p) represents a superset of all search
spaces Q(p′) of descendant nodes p′, the objective function value S+

n+1 of an optimal solution
S+ to SCHEDULE(Q(p)) represents a lower bound on the minimum project duration of all
schedules which will be generated in the enumeration tree with root p. Let this lower bound
be denoted by lb1(p). Since lb1(p) results from solving SCHEDULE(Q(p)), its computation
does not require additional effort.

For problem instances with tight inventory constraints the calculation of a second lower
bound lb2(p) turns out to be more expedient. Let d̃ be a hypothetical upper bound on the
minimum project duration. Then LSi := d̃ − di,n+1 represents the latest occurrence time Si

of event i ∈ V such that Sn+1 ≤ d̃. A lower approximation on the stock rk(S, t) of resource
k ∈ R at time t for all schedules S ∈ Q(p) is given by the (not necessarily time–feasible)

schedule Sk with Sk
i = LSi if rik > 0 and Sk

i = S+
i , otherwise. Analogously, schedule S

k
with

S
k

i = S+
i if rik > 0 and S

k

i = LSi, otherwise, provides an upper approximation on the stock
of resource k at time t. If

rk(S
k, t) > Rk or rk(S

k
, t) < Rk (10)

holds for a resource k ∈ R at a time t ≥ 0, there is no feasible schedule S ∈ Q(p) with
project duration Sn+1 ≤ d̃, and d̃+1 represents a valid lower bound on the minimum project
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duration of feasible schedules S ∈ Q(p). lb2(p) corresponds to the least value d̃ ≥ lb1(p)
which cannot be disproved by (10). For lb2(p) > d, the problem instance has been shown to
be unsolvable. If the distance matrix D is given, lb2(p) can be computed in O(|R|n logn)
time.

We use two fathoming rules to further prune the enumeration tree. Again, let p be the node
under consideration and let A ≺ B be the disjunctive precedence constraint defined at node
p. First, an event i can be removed from set A if there is a distinct event h ∈ A with dhi > 0.
Furthermore, all remaining events i ∈ A satisfying maxj∈B dji ≥ 0 can be transferred from
set A to set B. The first rule fathoms node p if A is void or if B does no longer represent a
minimal delaying alternative. The second rule corresponds to an adaptation of De Reyck and
Herroelen’s subset dominance rule to disjunctive precedence constraints. If the whole search
space Q(q) of an enumeration node q has been explored and if Q(q) forms a superset of Q(p),
node p can be fathomed. This dominance rule can be implemented efficiently exploiting the
properties that (1) Q(q) forms a superset of all descendants’ search spaces and (2) performing
a depth–first–search, the parents of nodes q with inclusion–maximal completely explored
search spaces are ancestors of p.

5 Truncating the Enumeration

Since the optimization problem (P) is NP–hard in the strong sense, the computation of opti-
mal schedules to large instances including hundreds of events generally is too time–consuming.
This implies the need of efficient heuristic procedures which generate good feasible solutions
within a reasonable amount of time. In what follows, we sketch the truncation of the branch–
and–bound algorithm to a filtered beam search. By f and b < f we denote the integers
corresponding to the filter width and the beam width, respectively. After the generation of all
child nodes p′ of current node p, we perform one iteration of the fix–point algorithm solving
SCHEDULE(Q(p′)) where only the disjunctive precedence constraint A ≺ B introduced at
node p′ is taken into account. Then the nodes p′ are ordered according to nondecreasing
values ϕ(p′). For the first f nodes SCHEDULE(Q(p′)) is solved whereas the remaining child
nodes of p are excluded from further consideration. Subsequently, the nodes p′ with b least
values ϕ(p′) are added to the enumeration tree.

For real–life problem instances even a beam width b = 2 may be too large. Therefore, we
introduce the integer random variable

b̃ = max{1, round(bũ)}

where ũ is uniformly distributed in interval [0, 1] and the real b ≥ 1 is the selected maximum

beam width. The expected value of b̃ equals (b
2
+1)/2b. The filter width f and the maximum

beam width b are chosen according to the number n of events and the desired size of the
enumeration tree.

6 Computational Results

The branch–and–bound algorithm and the filtered beam search heuristic have been coded in
ANSI C. The experimental performance analysis is based on problem instances which have
been randomly generated with the project generator ProGen/max. The different parameters
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which control the shape of the project network, the tightness of time lags, and the resource
requests are described in Schwindt (1996). Cumulative resource constraints (4) are generated
as follows. First, for each pair (i, k) of events i ∈ V and resources k ∈ R we determine whether
event i requests resource k or not. The corresponding resource factor control parameter RF
defines the percentage of pairs (i, k) belonging to a request. Second, the respective resource
requirements rik are drawn randomly from set {rmin, . . . , rmax}. The scarcity of resources
is controlled by the resource strength RS. The minimum inventory Rk and the maximum
capacity Rk of resource k are given by Rk = RSmint≥0 rk(ES, t) + (1 − RS)

∑

i∈V rik and

Rk = RSmaxt≥0 rk(ES, t) + (1 − RS)
∑

i∈V rik. RS = 0 implies that the resource profiles
belonging to resource–feasible schedules are constant over time, whereas for RS = 1 the
earliest start schedule ES is feasible and thus optimal.

Our testset consists of 360 projects with 10, 20, 50, and 100 events, respectively. All instances
have 5 resources. The resource factor has been chosen to RF = 0.75, the requirements are
uniformly distributed in set {−2, . . . , 2}, and the resource strength is RS = 0.9. Compu-
tational experience shows that smaller RS values result in a high percentage of unsolvable
instances, in particular if the temporal constraints prevent the simultaneous occurrence of a
large number of events.

The tests have been performed on an Intel Pentium PII personal computer with 333 MHz
clock pulse operating under Windows NT 4.0. We imposed a time limit of 30 s. The in-
stances including n = 50 and n = 100 events have been solved by a variant of the above
algorithm where the minimal delaying alternatives (whose number grows exponentially with
the cardinality of the active set) are replaced by one–element subsets of the active set. For
the different values of n, Table 1 shows the percentages popt of instances for which optimality
could be shown, the percentages puns of instances whose unsolvability could be proved, the
percentages of instances which could be solved to feasibility but not to optimality, and the
percentages punk of instances whose solvability remains unknown. ∆lb2 denotes the mean
relative deviation of the best solution found from lower bound lb2 where the mean is taken
w.r.t. all unsolved instances for which a feasible schedule has been determined. tcpu is the
mean running time in seconds.

popt puns pfeas punk ∆lb2 tcpu

n = 10 66.7% 33.3% 0.0% 0.0% — 0.072

n = 20 48.9% 51.1% 0.0% 0.0% — 0.074

n = 50 50.0% 45.6% 2.2% 2.2% 1.4% 1.700

n = 100 54.4% 34.4% 8.9% 2.2% 6.9% 3.896

Table 1: Computational results

Applying filtered beam search (filter width f = 10, maximum beam width b = 3) to the
unsolved instances with 100 events, the mean relative deviation of the best schedule from lb2
is decreased to 5.3%.
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