Christoph Schwindt 1

Solution Procedures for Production Planning
and Detailed Scheduling in Process Industries

Christoph Schwindt

Institut fiir Wirtschaftstheorie und Operations Research
University of Karlsruhe

D-76128 Karlsruhe, Germany

e-mail: schwindt@wior.uni—karlsruhe.de

Abstract. In this paper we consider solution procedures for short-term planning in process
industries operating in batch production mode. The planning problem is decomposed into a
batching and a batch scheduling problem. Batching is concerned with the partitioning of total
requirements for intermediate and final products into individual batches. In the course of batch
scheduling, those batches are allocated to scarce production and storage resources over time. The
batching problem can be formulated as a nonlinear mixed-integer programming problem. The
batch scheduling problem corresponds to a hybrid shop floor scheduling problem with sequence—
dependent cleanings and finite—capacity buffers. For solving the batching problem we propose
a transformation into a mixed—binary linear program. The batch scheduling problem is solved
by a truncated branch-and-bound method using concepts from resource-constrained project
scheduling. An experimental performance analysis based on a collection of benchmark instances
from literature shows that short-term planning problems of practical size can be approximately
solved within a short amount of time. A generalized version of the batch scheduling algorithm
has been integrated into the Advanced Planning System SAP APO.

Key words: Operations planning and scheduling, process industries, Advanced Planning
Systems, batching and batch scheduling, mixed-integer programming.

1 Introduction

In process industries, each final product results from a sequence of tasks representing physical
and chemical transformations of raw materials and intermediate products. In the following, we
focus on batch production, where all materials flows are discontinuous.

The combination of a task with the quantities of input and output products for one execution of
the task is referred to as a batch. One task generally corresponds to several batches of the same
type. Each batch is processed on one processing unit (e.g., a reactor, a heater, or a filter). One
and the same batch may be performed on different alternative processing units. For a given task,
the batch size corresponds to the total quantity of all input products loaded into the processing
unit. The batch size has to be chosen within a given range.

The following peculiarities differentiate batch production in process industries from the manu-
facturing of piece-goods. The processing times of tasks are independent of the respective batch
sizes. A processing unit has to be cleaned before executing the next operation when switching
to a higher—quality output product or in case of idle times. Certain intermediate substances

Christoph Schwindt 2

are perishable and thus cannot be stored. Other intermediate products have to be stocked in
dedicated storage facilities of finite capacity. Recycling of intermediate products implies that a
certain amount of the production is not available for matching the primary requirements.

The short—term planning problem consists of allocating processing units and storage facilities
over time to the production of given primary requirements for final products such that all op-
erations are completed within a minimum makespan. In the context of Advanced Planning
Systems, the short-term planning problem is decomposed into a production planning and a de-
tailed scheduling problem (cf. Trautmann, 2001). This decomposition fits the organizational firm
structure while markedly decreasing the severe computational requirements incurred by solving
the entire short—term planning problem at one time (see Silver et al., 1998, Sect. 13.3). The
production planning phase generates appropriate batches (batching problem), and the detailed
scheduling phase sequences those batches on the processing units subject to inventory constraints
(batch scheduling problem). The batching problem can be formulated as a nonlinear mixed—
integer program, and the batch scheduling problem can be viewed as a resource—constrained
project scheduling problem with sequence-dependent cleanings and storage resources (cf. Neu-
mann, 2001).

In the remainder of the paper we proceed as follows. In Section 2 we devise a transformation
of the nonlinear batching problem into a mixed—binary linear programming problem. Section 3
is devoted to a branch—-and—bound algorithm for solving the batch scheduling problem. This
algorithm is based on the relaxation of the resource constraints and enumeration of alternatives
for resolving resource-infeasibilities in the resulting schedules. The experimental performance
analysis of Section 4 indicates that the combination of both algorithms can be used for solving
large—scale problems within a reasonable amount of time. Compared to methods which have been
proposed in literature recently, the quality of feasible solutions is improved and the computational
effort is markedly reduced.

2 Solving the batching problem

First we recall some notation from Neumann (2001). Let 7 be the set of all tasks and let 8, and
e, be the batch size and number of batches for task 7 € 7. By P, and P we denote the set
of input and output products, respectively, of task 7. P, := P~ U P is the set of all input and
output products of task 7, and P := U,<7P; is the set of all products considered. In addition
to B; and &,, the proportions —a,, > 0 of all input products 7 € P~ and the proportions
a;r > 0 of all output products 7 € P have to be determined for all tasks 7 € T. Batch sizes 3,
and proportions «;, have to be chosen within prescribed intervals [@T,BT] and [a,,, @rr|. The
number of batches ¢, is bounded by the maximum number Z, of batches for task 7 which can
be executed within the planning horizon.

Let 7, and 7, be the sets of all tasks consuming and producing, respectively, product © € P
and let PP C P be the set of perishable products. Then equations o, 8, = —a, 3, for all
m € PP and all (1,7") € T." x 7.~ ensure that the amount of product m produced by one batch

of some task 7 € 7 can immediately be consumed by any task 7' € 7.~ consuming 7.

By p: we denote the primary requirements minus the initial stock of 7. For recycled products

Christoph Schwindt 3

m € P, pr is augmented by a residual stock after the completion of the last batches. The
inventory of product 7 after the completion of all batches equals 3, 7 a;rB;e,, where T, :=
7.7 UT". This amount must be sufficiently large to match the requirements p,. The final stock
YoreT. Qrrfreér — pr of product 7 must not exceed the given storage capacity o, for 7.

With p. being the mean processing time of task 7 € T on the alternative processing units, the
batching problem can be formulated as follows (cf. Neumann, 2001):

([Min. > p.er (1)
TET
st oy < o < pr (reT,meP,) (2)
Z Qrp = — Z Qrr =1 (TET) (3)
rept _ mePr
(BP) B < B <B, (reT) (4)
aTW/BT = _aT’ﬂ'/BT’ (7T € ’Pp’ (Ta 7—,) € 7r+ X7;__) (5)
Pr < D e < prton (mEP) (6
TETx
0<e, <&, (treT) (7)
{ e, €EZ (reT) (8)

Proposition 1. NP-hardness of batching

The feasibility problem for (BP) is NP-hard in the strong sense even if PP = (), o, = oo for all
T € P, and’PT:1,§T:oo,§T:BTforall7'eT.

Proof. We provide a polynomial transformation from 3-PARTITION (cf. Garey and Johnson,
1979). Let B € IN be a bound and let A be a set of 3v elements A with associated sizes s(A) € IN
such that B/4 < s(\) < B/2 and Y54 $(A) = vB. The question is whether or not A can be
partitioned into v sets Ai,..., A, such that 3¢, s(A\) = Bforall p=1,...,v.

For each A € A, we introduce a raw material m, with
initial stock s(A), and each index py = 1,...,v is as-
signed to a final product 7, with primary requirement
B. For each raw material 7, and each final product
7, we define one task 7y, transforming m, into 7,
with 5, = By, = s(A) (see Figure 1). Because of the
scarcity of raw materials, at most one batch of tasks
Tyu can be executed for each A € A. Since the cumu-
lative requirements v B for all final products equal the
total inventory > ,c4 s(A) of all raw materials, exactly
one batch consuming product m) is executed for each
A € A, say, a batch of task 7,,. There is a feasible
batching precisely if > c4 5(A)er,, = B holds for all
p=1,...,v. Since A € 4, & e€n, = 1, this condi- Figure 1: Batching problem to the
tion is met exactly if the 3-PARTITION instance is a proof of Proposition 1

yes—instance. O

Christoph Schwindt 4

It can easily be shown that the feasible region belonging to the continuous relaxation of problem
(BP) is generally nonconvex. Thus, the computation of an optimal solution to (BP) is not only
intractable from the complexity point of view but worse still, poses a serious algorithmic problem.
That is why we develop a formulation of the batching problem as an equivalent mixed—binary
linear program. The number of binary variables in the latter problem equals the upper bound
Y re7 &r on the number of batches which can be carried out within the planning horizon.

To linearize the constraints of (BP) we first introduce the continuous variables
€T7T = Oéﬂrﬁ'r (7— S T, (S P’T‘)

representing the negative amount of product 7 consumed or the amount of product = produced,
respectively, by a batch of task 7. Since the batch size of a task equals the sum of all input
quantities, we have

/BT: Z §T7T (TET)

rePy
Thus, the lower and upper bound constraints (2) on proportions «,, can be written as
Qrp Z 67'71" < §T7T < Qg Z €T7T’ (T € Taﬂ— € PT) (9)
wePr ' ePF

The equations

Z g’?’ﬂ" = - Z §T71" (T S T) (10)

' epr ' EPF

correspond to the mass balance constraints (3) and the batch size constraints (4) now read

B, <Y &n<B, (r€T) (11)

WEP;"

Similarly, the batch size coupling conditions (5) for perishable products can be formulated as

o = & (reP? (r,7)e T xT") (12)

In order to eliminate the products &,,&, occurring in the inventory constraints (6), we replace
&-rer with the sum of €, continuous variables &¥_ (u =1,...,&;), where

. _{ ny <

Tr .
0, otherwise

The number €, of batches for task 7 is represented by the sum of €, binary variables 6%, which
equal one exactly if u < e,, that is,

Pr — 1’ if z:71'673.,.+ §7I'£7r >0
T 0, otherwise

The linking between variables £# and 6* can be achieved as follows if 7 is output product of
task 7 (i.e., &q > 0):

i
TT

I
TT

0
§T7r - (1 - HITL)ETWBT

€rn

<
< CrrB, 0"

VANV

} (reT,mePHun=1,...,&) (13)

Christoph Schwindt 5

If &4 >0, then &* < @, f(3,0* implies * > 0. For &* =0, &, — (1 — 04,3, < E* provides
0¥ = 0. 0* = 1 and inequality &, — (1 — 0%)@,, (3, < &4 imply &4 = &... For O = 0, it
follows from & < @,,(3,0* that £&¢ = 0. Hence, constraints (13) enforce the equivalences
=1 & >0 =&, Constraints (14) show the analogous conditions for tasks 7 and
input products 7 (i.e., &, < 0):

€on

= = (reT,meP; 1 gr) (14)
_ _ T , T —u=1...,&
B0 < € < &n— (1—0Ma,,B, g

The linear ordering

0r>602>--->0" (t€T) (15)
of the binary variables §* associated with one and the same task 7 ensures that the first ¢,
binary variables 6., ..., 6 equal one. This condition is not necessary regarding the equivalence

of both batching models. However, it reduces the number of feasible solutions considerably.

Now we are ready to formulate the inventory constraints (6) as linear inequalities:

< S Y <pto (reP) (16)

TET: p=1

The mixed-binary programming formulation of the batching problem is as follows:

Min. Y5, 3 0"
B‘ﬁ TET p=1
(BP) st. (9) to (16)

¢4 € {0,1} (reT,u=1,...,%)

Westenberger and Kallrath (1995) describe a real-life short—term planning problem from chem-
ical industry which covers all the features discussed in Section 1 (for details see Trautmann,
2001). The corresponding batching problem (BP) with 876 continuous and 768 binary vari-
ables has been solved to optimality within 4 seconds using CPLEX 6.0 on an 800 MHz Pentium
personal computer.

3 Solving the batch scheduling problem

The problem of scheduling the batches on the processing units subject to inventory constraints
can be modelled as a resource—constrained project scheduling problem (cf. Neumann, 2001),
where the operations i € V = {1,...,n} correspond to batches for tasks 7(7), the renewable re-
sources k € R” of capacity 1 correspond to processing units, and the cumulative resources k € R”
with safety stock R, = 0 and capacity R, = o, correspond to storage facilities keeping products
7 € P. The requirements for cumulative resources k by operations ¢ are 7y, = o (i)« Br()-

Again, we first list some notation from Neumann (2001). For each operation i € V and each
renewable resource k¥ € R? on which ¢ can be carried out, the binary assignment variable z;

Christoph Schwindt 6

indicates whether or not i is executed on k. Processing and cleaning times depend on assignment,

T = (Tik) e pere-

Besides an assignment x, we seek a schedule, that is, a vector S = (S;);ey of start times S; for
operations i € V :={0,1,...,n,n+ 1}, where the fictitious operations 0 and n + 1 represent the
project beginning at time Sy = 0 and the project termination at time S, ;. Between the start
of certain operations ¢ and j, assignment—dependent minimum and maximum time lags dZ“” (x)
and df}**(v) are prescribed. Those time lags can be represented by a project network N with
node set V, arc set E, and arc weights d;;(z) for (4,j) € E.

A cleaning between two successive operations ¢ and j on renewable resource k becomes necessary
precisely if 7(j) > 7(¢) or S; > S;+p;(z), where the tasks are assumed to be numbered according
to increasing product quality. Let Oy (S, z) be the set of all pairs (7, j) such that i # j, S; < Sj,
and 7 and j are executed on k, i.e., zjy = zjx = 1. Ok(S,x) can be partitioned into the set
Ci(S, z) containing all pairs (7, j) for which £ has to be cleaned if j is processed after 7 and the
set Cr(S,) of pairs for which j must be started immediately after the completion of i.

For k € R, let
Au(S,z,t) = {0y Uu{i eV |rp<0,Si<t}u{i eV |ry>0,5+p(z) <t} (17)

be the set of operations ¢ that deplete or replenish cumulative resource k£ by time £ > 0. Then
Tk(S,%,t) = Yicay(sz, Tik 18 the inventory of product 7 stocked in cumulative resource k at
time t. The batch scheduling problem now can be stated as follows (cf. Neumann, 2001):

(

Min. Sn_|_1 (18)
st > agp=1 (ieV) (19)
X e
S; > Si+pi(e) + aile), if (i) € Cu(S,) } k€ 79) (1)
S; = S; +pi(x), if (i,7) € Ck(S, z)
Ek S Tk(Samat) S Rk (k € R’Y:t Z O) (22)
T, € {0,1} (ieV,keRl) (23)

\

A schedule S is called process—feasible if S fulfills constraints (21) and storage—feasible if S
satisfies inequalities (22).

By transformation from the flow shop problem F'||Cy,.x it can easily be shown that the feasibility
problem for (BSP) is NP-hard in the strong sense. Next, we briefly sketch the generation
scheme of a branch—and-bound algorithm for solving the resource—constrained project scheduling
problem (BSP).

The constraints that make the problem intractable arise from the scarcity of renewable and
cumulative resources. By relaxing the corresponding constraints (19), (21), and (22) we obtain a
temporal scheduling problem, where d;;(z) in (20) is replaced with min{d;;(z) | z satisfies (19)}.
The temporal scheduling problem represents a longest path problem in project network N and
can be solved by standard network flow algorithms.

An optimal solution to this relaxation may be infeasible for (BSP) due to two reasons: there may

Christoph Schwindt 7

be operations i € V for which no renewable resource k € R? has been selected so far and thus
equation (19) is violated, or one of the resource constraints (21) and (22) may not be met (when
checking inequalities (22), we replace p;(x) and ¢;(x) in (17) with min{p;(z) | x satisfies (19)}
and min{c;(z) | = satisfies (19)}, respectively). In the former case, we select some k € R? for
processing 7 by putting z;, := 1 and replace RY with {k}. Violations of the resource constraints
can be avoided by introducing appropriate time lags between some operations and adding the
corresponding arcs to the project network N.

By assigning renewable resources to the execution of operations and adding time lags we obtain
a new (BSP) with a tighter relaxation in an expanded project network N. The selection of
renewable resources and the addition of time lags is continued until assignment z is complete
and the temporal scheduling yields a feasible schedule S or until the temporal scheduling problem
is unsolvable because N contains a cycle of positive length. Figure 2 shows a generation scheme
where violations of the resource constraints (21) and (22) are resolved in chronological order
and a renewable resource is selected each time schedule S satisfies all resource constraints with
respect to current assignment z.

FORi=1,...,n DO
IF |R?| > 1 THEN set z;;, := 0 for all k € RY.
ELSE put z;, := 1 for k € RY.
END (x FOR %)
REPEAT
Calculate longest path lengths £y; from 0 to all nodes 7 in the (expanded) project network N.
IF N contains cycle of positive length THEN terminate (* no feasible solution is found x)
ELSE set schedule S := (£;),.
Determine earliest point in time t € {S1,S1+p1,---,Sn, Sn +pn} for which constraints (21) or (22) are
not satisfied.
IF ¢t < co THEN add appropriate arc (i,7) with weight d;;(z) to (expanded) project network N.
ELSE (xS is feasible with respect to x)
Determine earliest point in time ¢ at which some operation i with |R?| > 1 is started.
IF ¢ < oo THEN select some renewable resource k € RY and set z;;, := 1, Rf := {k}.
ELSE RETURN (S, z) (x(S,x) is feasible solution *)
END (+IF #)
END (+ REPEAT x)

Figure 2: Generation scheme for batch scheduling

We now consider in more detail how to determine appropriate time lags for resolving resource
conflicts. Let us assume that schedule S is not process—feasible with respect to z. Then there
exist pairs (4, j) € Og(S, z) such that

(a) 7(j) > 7(¢) and S; < S; + pi(x) + ¢i(x), or
(b) 7(j) < 7(¢) and S; < S; + pi(z), or
(¢) 7(j) < 7(i) and S; + pi(x) < Sj < S; + pi(w) + ci(w).
Case (a) can be dealt with by considering the two alternatives depicted in Figure 3a, where

the shaded boxes correspond to cleanings between operations 7 and j. First, we may introduce

the minimum time lag dj}"*(z) := p;(z) + ci(z) delaying operation j up to the point in time

Christoph Schwindt 8

where the cleaning of resource £ is terminated. Second, the conflict can be settled by adding the
minimum time lag d;’z“"(x) := p;(x) saying that operation ¢ cannot be started before operation
j has been completed (note that in this case, cleaning of k is not necessary). Case (b) can
be handled by interchanging the roles of operations ¢ and j: The two alternatives consist of
introducing the minimum time lags dj}""(x) := p;(z) or d7"(x) := p;(z) +¢;(z) (see Figure 3b).
The conditions of case (c) say that there is an idle time between the completion of operation 4
and the start of operation j which is not sufficiently large for cleaning & (see Figure 3c). Then
the first alternative is to delay j up to the end of the cleaning after the execution of 7, i.e.,
dz’;’"(x) = pi(x) + c,-(:p). Analogously, 7 may be delayed up to the end of the cleaning after the
execution of j, i.e., d7;""(z) := p;(z) +¢;(x). A third alternative consists of avoiding the cleaning
of k before j starts by introducing the maximum time lag dj?**(z) := p;(x).

Figure 3: How to resolve process-infeasibility

The cumulative resource constraints (22) are violated if the inventory of some product falls below
zero or exceeds the storage capacity. At first, we consider the case where at some time ¢ > 0 the
inventory of a product 7 kept in cumulative resource k is negative. We choose an operation 1
with S; + p;(z) > t and 7 > 0 and an operation j with S; < ¢ and 7, < 0 (cf. Figure 4a). We
then delay the start of operation j (i.e., the depletion of k) up to the completion of operation
i (i.e., the replenishment of k) by introducing the minimum time lag dj7"*(z) := pi(z) . The
case where at time ¢t > 0 the inventory of 7 exceeds the capacity of k is illustrated in Figure 4b.
We select an operation ¢ with S; > t and 7 < 0 and an operation j with S; + p;(z) < ¢t and
ik > 0. The completion of operation j (i.e., the replenishment of k) is delayed up to the start
of operation i (i.e., the depletion of k) by introducing the maximum time lag d7;**(z) := p;(x).

A branch-and-bound algorithm based on the above generation scheme has been implemented
in C under MS-Visual C++ 6.0. The batch scheduling problem with 78 operations resulting
from the optimal batches for the Westenberger-Kallrath (WK) example has been approximately
solved using a truncated version of the branch-and-bound algorithm (beam search). On a
Pentium personal computer with 800 MHz clock pulse operating under MS Windows 2000, we

Christoph Schwindt 9

(a) (S, z,1) (S, z,1)

(b) Tk(87x7t) Tk(Saa“at)
Ry T]k{ """""""""" } =Tk T
| _ Pratr
I : I i t I I I I I i t
S;+pi(z) S S; +pi(x) =8;

Figure 4: How to resolve storage-infeasibility

have obtained a feasible schedule with a makespan of 88 units of time within an imposed running
time limit of 56 seconds. Thus, approximately solving the entire short-term planning problem
has taken one minute of computing time. The schedule found is the best solution known thus
far for the WK example.

4 Experimental performance analysis

In this section, we are going to test the decomposition approach using 22 instances which have
been generated by varying the primary requirements for the final products of the WK example.
This test set has been used by Blomer and Giinther (1998) for evaluating different solution
procedures which are based on a monolithic mixed—integer linear programming formulation of
the short—term planning problem. We compare our decomposition approach (B+BS) with the
best of those methods, the time grid heuristic (TGH).

For each instance, we have imposed a running time limit of one minute, have solved the corre-
sponding batching problem to optimality, and have allotted the remaining computation time to
the beam search procedure for the batch scheduling problem. For each instance, Table 1 shows
the makespans and CPU times belonging to methods TGH and B+BS. Column “best” refers to
the best feasible solution which could be obtained by some of the heuristics based on mixed—
integer linear programming (the data for those procedures have been communicated by Giinther,
1999). An asterisk after the makespan for the B+BS method indicates that either a provably
optimal solution has been found or the best solution known until now could be improved.

The results displayed in Table 1 indicate that compared to the time grid heuristic, the decom-
position method generally (for 21 out of 22 instances) finds a better solution within a markedly
shorter amount of time. In particular, the results for the four largest instances 19 to 22 show
that the B4BS procedure scales quite well. It is worth noting that all batching problems could
be solved to optimality, where the computation times vary from 2 seconds (instance 1) to 31
seconds (instance 11).

Christoph Schwindt 10

Instance Primary requirements ‘ TGH CPU time* ‘ Best ‘ B+BS CPU time?

1 (20,20,20,0,0) 36 1110 | 36| 36 « 3
2 (20,20,0,20,0) 42 2247 | 38| 38 x 13
3 (20,20,0,0,20) 42 2487 | 38| 38 x 17
4 (20,0,20,20,0) 48 1550 | 38| 39 60
5 (20,0,20,0,20) 44 1778 | 36 | 41 60
6 (20,0,0,20,20) 48 3605 | 48 | 43 * 60
7 (0,20,20,20,0) 52 2587 | 42| 38 x 60
8 (0,20,20,0,20) 48 3123 | 42| 39 * 60
9 (0,20,0,20,20) 54 3607 | 54| 53 * 60
10 (0,0,20,20,20) 60 3607 | 56 | 50 * 60
11 (10,10,20,20,30) 68 3605 | 66 | 66 60
12 (30,20,20,10,10) 60 3605 | 52| 52 60
13 (10,20,30,20,10) 64 3604 | 61| 50 * 60
14 (18,18,18,18,18) 66 3606 | 66 | 57 * 60
15 (15,15,30,30,45) 148 3622 | 112 | 114 60
16 (45,30,30,15,15) 124 3628 | 76 | 80 60
17 (15,30,45,30,15) 112 3621 | 88| 91 60
18 (27,27,27,27,27) 124 3631 | 88| 91 60
19 (20,20,40,40,60) 208 5152 | 208 | 135 * 60
20 (60,40,40,20,20) 184 3638 | 184 | 100 * 60
21 (20,40,60,40,60) 184 3643 | 124 | 112 * 60
22 (36,36,36,36,36) 214 3635 | 172 | 134 * 60

%n seconds on a Pentium—266 PC, truncated after one hour if feasible solution could be found
bin seconds on a Pentium-800 PC, truncated after one minute

Table 1: Computational results

References

Blomer F. and H.O. Giinther (1998). Scheduling of a multi-product batch process in the
chemical industry. Computers in Industry 36, 245-259.

Garey, M.R. and D. Johnson (1979). Computers and Intractability. Freeman, New York.
Giinther, H.O. (1999). Personal communication.

Neumann, K. (2001). Modelling of production planning and detailed scheduling for process
industries. Proceedings of IEPM ’01.

Silver, E.A., Pyke, D.F., and Peterson, R. (1998). Inventory Management and Production
Planning and Scheduling. John Wiley, New York.

Trautmann, N. (2001). Components of Advanced Planning Systems for process industries.
Proceedings of IEPM 01.

Westenberger, H. and J. Kallrath (1995). Formulation of a job shop problem in process
industry. Unpublished working paper, Bayer AG, Leverkusen and BASF AG, Ludwigshafen,
Germany.

