
Project Scheduling with Changeover Times:

A Branch-and-Bound Approach

Christoph Schwindt

Institut für Wirtschaftstheorie und Operations Research
University of Karlsruhe
D-76128 Karlsruhe, Germany
e-mail: schwindt@wior.uni-karlsruhe.de

Abstract. In this paper we consider the scheduling of projects with sequence-dependent
changeover times between activities. Those changeover times arise in multisite projects, where
activities sharing common renewable resources are performed at distributed locations. In the
context of production scheduling, the changeover times correspond to setup or cleaning times of
production facilities. We study the problem of optimizing a time-based or financial project objec-
tive like the project duration or net present value subject to temporal and resource constraints.
The temporal constraints are given by prescribed minimum and maximum time lags between
the starts of activities. The resource constraints refer to the scarcity of renewable and storage
resources. We present a branch-and-bound algorithm, which is based on iteratively replacing the
resource constraints by precedence relationships between activities that compete for the same
resources. Those precedence relationships can be formulated as minimum or maximum time
lags. For renewable resources with sequence-dependent changeover times, appropriate sets of
competing activities can be obtained by solving a maximum-cut problem in a schedule-induced
precedence graph. We show how for the latter problem, an equivalent standard maximum-flow
problem can be constructed.

Key words: Operations planning and scheduling, project scheduling, changeover times, branch-
and-bound, maximum-flow problem

1 Introduction

A project is a one-time undertaking decomposing into interacting activities, which require time
and resources for their execution. Let V = {0, 1, . . . , n, n + 1} be the set of all activities. 0 and
n + 1 denote the dummy project beginning and project termination activities. Each activity
i ∈ V is associated with a duration pi ∈ Z≥0, where p0 = pn+1 = 0. Let Si be the start time
of activity i to be determined when scheduling the project. A vector (Si)i∈V with S0 = 0 and
Si ≥ 0 for all i ∈ V is called a (project) schedule. We assume that during their execution,
activities must not be interrupted, i.e., Si + pi is the completion time of activity i. Hence, a
schedule S uniquely defines the timetable of the project.

For certain activities i, j ∈ V , a minimum time lag δij ∈ Z between the start of activity i and
the start of activity j may be prescribed. The minimum time lags define temporal constraints

Sj − Si ≥ δij ((i, j) ∈ E) (1)

where E ⊂ V × V . Negative minimum time lags δij can be interpreted as positive maximum
time lags −δij between the starts of activities j and i. In particular, we assume that there exists
a maximum time lag of d time units (the project deadline) between the project beginning 0 and
the project termination n+1, i.e., δ(n+1)0 = −d. A schedule S satisfying the temporal constraints
is termed time-feasible. The set of all time-feasible schedules is denoted by ST .

For performing the project, a set Rρ of renewable resources k is used. The capacity Rk ∈ N
of resource k ∈ Rρ specifies the number of resource units available. Each activity i ∈ V
occupies rik ∈ Z≥0 units of resource k during its execution in time interval [Si, Si + pi[. Let
Vk := {i ∈ V | rik > 0} be the set of all activities using resource k and put Vk := Vk ∪{0, n+1}.
Between the execution of two consecutive activities i, j ∈ Vk on one and the same unit of
resource k, a changeover time ϑk

ij ∈ Z≥0 is needed during which the unit is not available for
processing, where for notational convenience ϑk

0i := ϑk
i(n+1) := 0 for all i ∈ Vk and ϑk

ii := ∞ for

all i ∈ Vk. We assume that the changeover times satisfy the weak triangle inequalities

ϑk
hi + pi + ϑk

ij ≥ ϑk
hj (h, i, j ∈ Vk) (2)

Conditions (2) mean that we cannot save changeover time by processing extra activities. We call
a schedule S changeover-feasible if for every resource k ∈ Rρ, the activities from set Vk can be
assigned to rik units of resource k each in such a way that for any two activities sharing common
units, the time interval between the completion of the first and the start of the second activity is
sufficiently large for carrying out the changeover (see Neumann 2003). Given schedule S, strict
order

Ok(S) := {(i, j) ∈ Vk × Vk | Sj ≥ Si + pi + ϑk
ij}

in ground set Vk provides the set of all pairs (i, j) for which S allows for a changeover from i to
j on resource k. Accordingly, i and j may share some units of resource k precisely if {i, j} is a
chain in strict order Ok(S), i.e., either (i, j) ∈ Ok(S) or (j, i) ∈ Ok(S). A set U ⊆ V which does
not include any chain {i, j} is referred to as an antichain in Ok(S). We call an antichain U in
Ok(S) with maximum weight rρ

k(S) :=
∑

i∈U rik an active set for resource k given schedule S. Let
Ak(S) be such an active set. By definition, no two activities i, j ∈ Ak(S) can occupy common
units of resource k, and thus rρ

k(S) coincides with the number of units of resource k that are
required for processing all activities i ∈ Vk (including the changeovers).

Now let Φk
ij denote the number of units of resource k which are to be changed over from i

to j given schedule S. Then Φk := (Φk
ij)(i,j)∈Ok(S) can be interpreted as a (0, n + 1)-flow in the

precedence graph Gk(S) of Ok(S) with node set V k and arc set Ok(S), and

rρ
k(S) = min

Φk≥0

{ ∑
i∈Vk

Φk
0i

∣∣ ∑
(j,i)∈Ok(S)

Φk
ji =

∑
(i,j)∈Ok(S)

Φk
ij = rik for all i ∈ Vk

}
In other words, rρ

k(S) equals the value of a minimum (0, n + 1)-flow Φk in Gk(S) saturating
the node capacities rik (see Trautmann 2003). Finding such a minimum flow can be done in
O(n3)-time by applying well-known network flow techniques (see, e.g., Bang-Jensen and Gutin
2000, Sect. 3.9). The (renewable-)resource constraints can now be formulated as

rρ
k(S) ≤ Rk (k ∈ Rρ) (3)

In practice, aside from the finite capacities of renewable resources, often the limited availability
of material or funds and the scarcity of storage capacity or assembly space have to be taken

into account when scheduling the project. Those requirements can be modelled by using the
concept of cumulative or storage resources introduced by Neumann and Schwindt (2002), which
have also been treated by Beck (2002) and Laborie (2003). Storage resources can be regarded as
stock-keeping facilities whose inventories are depleted and replenished over time by the activities
of the project. Let Rσ denote the set of all storage resources under consideration. For each
resource k ∈ Rσ, a minimum inventory level (safety stock) Rk ∈ Z≥0 and a maximum inventory
level (storage capacity) Rk ∈ Z≥0 are given. Activities i ∈ V have (storage) demands rik for the
resources k ∈ Rσ, where rik > 0 means that the inventory of resource k is replenished by rik

units at the completion of activity i and rik < 0 stands for a depletion of −rik units at the start
of activity i. r0k is the initial stock of resource k.

By V −
k := {i ∈ V | rik < 0} and V +

k := {i ∈ V | rik > 0} we denote the sets of activities depleting
and replenishing, respectively, the inventory of resource k. Then the active set Ak(S, t) :=
{i ∈ V −

k | Si ≤ t} ∪ {i ∈ V +
k | Si + pi ≤ t} for resource k at time t given schedule S is the set of

all activities whose joint resource demands provide the inventory level

rσ
k (S, t) :=

∑
i∈Ak(S,t)

rik

of resource k at time t. The inventory constraints

Rk ≤ rσ
k (S, t) ≤ Rk (k ∈ Rσ, 0 ≤ t ≤ d) (4)

ensure that during the execution of the project, the inventory levels remain between the safety
stocks and storage capacities. A schedule S satisfying the inventory constraints is called inven-
tory-feasible. A feasible schedule is time-, changeover-, and inventory-feasible.

The problem (P) to be solved consists of finding a feasible schedule S minimizing some given
time-based or financial objective function f : ST → R:

Minimize f(S)

subject to Sj − Si ≥ δij ((i, j) ∈ E)

S0 = 0, Si ≥ 0 (i ∈ V)

rρ
k(S) ≤ Rk (k ∈ Rρ)

Rk ≤ rσ
k (S, t) ≤ Rk (0 ≤ t ≤ d, k ∈ Rσ)


(P)

A solution to problem (P) is termed an optimal schedule. For what follows, we suppose that first,
f is lower semicontinuous and second, f is regular or convexifiable. The first condition guarantees
that an optimal schedule exists, provided that there is a feasible schedule. The second condition
implies that the resource relaxation of problem (P), i.e., the problem of minimizing f on the set
ST of time-feasible schedules, can be solved efficiently. Examples of regular objective functions
are the project duration, the maximum lateness, or the weighted tardiness. Convexifiable ob-
jective functions which have been investigated in literature are the weighted earliness-tardiness
and the (negative) net present value of the project (see Schwindt 2002, Sect. 2.3, and Neumann
2003).

2 Changeover- and inventory-feasibility of schedules

The basic idea for solving project scheduling problem (P) is to delete the resource and inventory
constraints and to transform the (generally infeasible) schedule arising from the resource relax-
ation into a feasible schedule. The transformation is achieved by first, refining the initial resource
relaxation through precedence relationships between activities from active sets that induce the
violation of a resource or inventory constraint and second, solving the relaxation again. Both
steps are alternated until a feasible schedule has been found. By enumerating the alternative
sets of precedence relationships resolving the resource or inventory conflicts, one obtains the
enumeration scheme of our branch-and-bound procedure.

Activity sets F ⊆ V causing conflicts on renewable resources k ∈ Rρ are called k-forbidden sets.
More precisely, we say that set F is k-forbidden if∑

k∈F

rik > Rk

A set F ⊆ V may cause a conflict on a storage resource k ∈ Rσ due to two reasons. Either the
joint resource demands by activities from set F fall below the safety stock or they exceed the
storage capacity of the resource. Sets F with∑

i∈F

rik < Rk (or
∑
i∈F

rik > Rk)

are called k-shortage sets (or k-surplus sets, respectively).

The following theorem, which has been proved by Bartusch et al. (1988) for the special case
of vanishing changeover times, shows how to remove violations of the resource constraints by
defining minimum time lags δij = pi + ϑk

ij between activities i, j from forbidden sets.

Theorem 1 (Bartusch et al. 1988) Schedule S is changeover-feasible if and only if for each
k-forbidden set F there exist two activities i, j ∈ F such that Sj ≥ Si + pi + ϑk

ij.

As we have seen in Section 1, the changeover-feasibility of a schedule can be efficiently checked
by solving a minimum-flow problem. Now assume that we are given some schedule S such that
rρ
k(S) > Rk for some k ∈ Rρ. Then the question arises how to find a k-forbidden set F that does

not satisfy the condition of Theorem 1. Clearly, the latter set necessarily forms an antichain in
strict order Ok(S), for otherwise we would have two activities i, j ∈ F with Sj ≥ Si + pi + ϑk

ij.
From our analysis in Section 1 it further follows that active set Ak(S) is k-forbidden. Since
Ak(S) is an antichain in Ok(S), the k-forbidden set sought can be chosen to be equal to Ak(S).

In what follows, we show how to compute set Ak(S) for given schedule S. We start by trans-
forming the node capacities rik of flow network Gk(S) from Section 1 into corresponding arc
capacities by splitting up every node i ∈ Vk into two nodes i′ and i′′, which are linked by an
arc (i′, i′′) with lower and upper capacities li′i′′ = ui′i′′ = rik. The remaining arcs in Gk(S)
are associated with zero lower and infinite upper capacities. Let Gk(S) denote the resulting
(modified) flow network. In Möhring (1985) it is shown that maximum (0, n + 1)-cuts C in such
a network only contain forward arcs. As a consequence, any path from 0 to n + 1 in Gk(S) is
only cut once, which implies that U := {i ∈ Vk | (i′, i′′) ∈ C} is an antichain in Ok(S). Since

l0i′ = li′′(n+1) = 0 for all i ∈ Vk and li′′j′ = 0 for all (i, j) ∈ Ok(S), the capacity of cut C equals∑
(i′,i′′)∈C li′i′′ =

∑
i∈U rik. On the other hand, from the strong duality relationship between the

minimum-flow and maximum-cut problems it follows that the capacity of C coincides with the
minimum flow value rρ

k(S) and thus U = Ak(S).

We proceed by explaining the way in which a maximum (0, n + 1)-cut C can be obtained
by one application of a standard maximum-flow procedure like the preflow-push algorithm by
Cherkassky and Goldberg (1997), which in addition to the maximum flow also provides a min-
imum cut in the flow network. At first, we notice that a feasible flow Φ̇k of value

∑
i∈Vk

rik in

Gk(S) can easily be constructed by setting Φ̇k
0i′ := Φ̇k

i′i′′ := Φ̇k
i′′(n+1) := rik and Φ̇k

i′′j′ := 0 for all

i, j ∈ Vk. Since we want to minimize the value of the (0, n + 1)-flow, we subsequently send a
maximum amount of Φ̇k

ij back from n + 1 to 0, which can be done by computing a maximum

(n + 1, 0)-flow Φ̈k in the residual network of Gk(S) and Φ̇k. The minimum (0, n + 1)-flow in
Gk(S) then equals Φk = (Φk

ij)(i,j)∈Ok(S) where Φk
ij = Φ̇k

ij + Φ̈k
ij − Φ̈k

ji for all (i, j) ∈ Ok(S). The

minimum (n + 1, 0)-cut in the residual network, which is yielded along with maximum flow Φ̈k,
then coincides with the maximum (0, n + 1)-cut C in Gk(S). In sum, given a schedule S, both
the changeover-feasibility of S can be checked and if S is not changeover-feasible, a k-forbidden
set F with Sj < Si + pi + ϑk

ij for all i, j ∈ F can be determined by solving |Rρ| maximum-flow
problems.

We now turn to the inventory-feasibility of schedules. Neumann and Schwindt (2002) have shown
the following counterpart of Theorem 1 for storage resources.

Theorem 2 (Neumann and Schwindt 2002) Schedule S is inventory-feasible if and only if

1. for each k-shortage set F with k ∈ Rσ there exist two activities i ∈ V +
k \F and j ∈ F ∩V −

k

such that Sj ≥ Si + pi, and

2. for each k-surplus set F with k ∈ Rσ there exist two activities i ∈ V −
k \F and j ∈ F ∩ V +

k

such that Sj ≥ Si − pj.

Accordingly, an inventory shortage for some storage resource k at a time t can be sorted out by
defining minimum time lags δij = pi between replenishing activities i outside active set Ak(S, t)
and depleting activities j from set Ak(S, t). Symmetrically, an inventory excess for k at time t
can be resolved by introducing minimum time lags δij = −pj between depleting activities i
outside Ak(S, t) and replenishing activities from Ak(S, t). The latter (negative) minimum time
lags represent maximum time lags of pj time units between activities j and i. In difference to
the case of renewable resources, the active sets and corresponding inventory levels can readily
be obtained by sorting the start and completion times of activities i ∈ V in increasing order.

3 Partitioning the feasible region

Given a resource or inventory conflict induced by some schedule, Theorems 1 and 2 tell us that
the conflict can be settled by introducing specific time lags between activities. In general, for
one and the same conflict alternative sets of time lags may be considered. For example, the
resource conflict induced by a two-element k-forbidden set {i, j} requires the introduction of

either δij = pi + ϑk
ij or δji = pj + ϑk

ji. In what follows we are concerned with the question how
alternative sets of time lags can be constructed in an appropriate way. For simplicity, we restrict
ourselves to resource conflicts. The case of inventory conflicts can be dealt with analogously.

Let S be a schedule such that for some renewable resource k ∈ Rρ, active set Ak(S) is k-
forbidden. We may enumerate sets of time lags δij = pi +ϑk

ij resolving the conflict by considering
all ⊆-minimal collections P of pairs (i, j) such that any k-forbidden subset F ⊆ Ak(S) contains
two activities i, j with (i, j) ∈ P . Now let P be the set of collections P obtained in that way
and denote by ST (P) the set of all time-feasible schedules satisfying the temporal constraints
Sj − Si ≥ δij for all (i, j) ∈ P . Then P generally contains distinct collections P and P ′ with
ST (P)∩ST (P ′) 6= ∅, which means that one and the same schedule S may be considered more than
once during the enumeration process. This redundancy can only be avoided if the decomposition
of the feasible region of problem (P) provided by the branch-and-bound procedure is a partition
into nonintersecting schedule sets.

Such a partition can be obtained as follows. Let π1 = (i1, j1), . . . , πν = (iν , jν) be a numbering
of all pairs (i, j) with i, j ∈ Ak(S), i 6= j. We then generate ν disjoint subsets Qµ (µ = 1, . . . , ν)
of the current search space Q where

Qµ = [Q∩ ST ({πµ})] \ [∪µ−1
λ=1ST ({πλ})]

The construction of subsets Qµ can be achieved by introducing, at the enumeration node be-
longing to pair πµ = (i, j), the temporal constraint Sj − Si ≥ pi + ϑk

ij and defining the reverse
constraint Sj − Si < pi + ϑk

ij for all enumeration nodes belonging to pairs πµ+1, . . . , πν . By
exploiting the fact that the feasible region of (P) is the union of integral polytopes, the reverse
constraint can be tightened to temporal constraint Sj − Si ≤ pi + ϑk

ij − 1, which corresponds to
a maximum time lag of −δji = pi + ϑk

ij − 1 time units between activities i and j. By using the
tightened constraints, we obtain that all sets Qµ are closed.

4 Branch-and-bound procedure

The enumeration scheme of our branch-and-bound procedure for solving problem (P) is now
as follows (cf. Algorithm 1). L is a list of search spaces and C denotes the set of candidate
schedules to be generated. At first, we add the set of all time-feasible schedules ST to list L
and put C := ∅. At each iteration we take some search space Q from list L and determine a
minimizer S of f on Q (recall that since f is regular or convexifiable, the latter problem can be
solved efficiently). We then compute active sets Ak(S) for all renewable resources k. If some of
those sets is k-forbidden, we generate ν subsets Qµ of search space Q as described in Section 3
and add those subsets to list L. Otherwise, we proceed by checking the inventory constraints.
To this end, we scan S for a start or completion time t of some activity i ∈ V such that active
set Ak(S, t) is a k-shortage or k-surplus set for some storage resource k. If no such point in
time t is found, schedule S is (inventory-)feasible and is thus added to the set C of candidate
schedules. Otherwise, the search space is again decomposed into disjoint subsets Qµ, which are
subsequently added to list L. We then take the next search space Q from list L and proceed in
the same way until no more search spaces Q remain on list L. Eventually, we return the set C
of candidate schedules found.

It follows from Theorems 1 and 2 that at the end of Algorithm 1, the set C of candidate schedules
contains an optimal schedule if problem (P) is solvable. Furthermore, it is easily seen that the
depth of the enumeration tree is O(n2 max{|Rρ|, |Rσ|}), since for each resource less than n2

pairs (i, j) can be generated on a path from the root node to a leaf of the enumeration tree.

Algorithm 1 Enumeration scheme of branch-and-bound procedure

initialize list of search spaces L := {ST} and set of candidate schedules C := ∅;
repeat

delete some search space Q from list L;
if Q 6= ∅ then

determine minimizer S of f on Q;
for all k ∈ Rρ do determine Ak(S) by solving maximum-flow problem;
if F := Ak(S) is a k-forbidden set for some k ∈ Rρ then

generate all pairs (i1, j1), . . . , (iν , jν) ∈ F × F \ {(i, i) | i ∈ F};
for µ = 1, . . . , ν do put Qµ := Q;
for µ = 1, . . . , ν do

put Qµ := Qµ ∩ {S ∈ ST | Sjµ ≥ Siµ + piµ + ϑk
iµjµ

} and add Qµ to list L;
for λ = µ + 1, . . . , ν do

put Qλ := Qλ ∩ {S ∈ ST | Sjµ ≤ Siµ + piµ + ϑk
iµjµ

− 1};
else (∗S is changeover-feasible ∗)

if there is a time t ∈ ∪i∈V {Si, Si+pi} such that F := Ak(S, t) is k-shortage or k-surplus
set for some k ∈ Rσ then

if F is a k-shortage set then
generate all pairs (i1, j1), . . . , (iν , jν) ∈ (V +

k \ F)× (F ∩ V −
k);

for µ = 1, . . . , ν do put Qµ := Q;
for µ = 1, . . . , ν do

put Qµ := Qµ ∩ {S ∈ ST | Sjµ ≥ Siµ + piµ} and add Qµ to list L;
for λ = µ + 1, . . . , ν do

put Qλ := Qλ ∩ {S ∈ ST | Sjµ ≤ Siµ + piµ − 1};
else (∗F is a k-surplus set ∗)

generate all pairs (i1, j1), . . . , (iν , jν) ∈ (V −
k \ F)× (F ∩ V +

k);
for µ = 1, . . . , ν do put Qµ := Q;
for µ = 1, . . . , ν do

put Qµ := Qµ ∩ {S ∈ ST | Sjµ ≥ Siµ − pjµ} and add Qµ to list L;
for λ = µ + 1, . . . , ν do

put Qλ := Qλ ∩ {S ∈ ST | Sjµ ≤ Siµ − pjµ − 1};
else (∗S is inventory-feasible ∗)

put C := C ∪ {S};
until L = ∅;
return C;

Finally, we summarize the results from an experimental performance analysis of a branch-and-
bound method that is based on the enumeration scheme of Algorithm 1. The test set consists of
360 projects with five renewable resource, five storage resources, and 10, 20, 50, or 100 activities
each. Those projects have been obtained by combining two test sets used by Franck et al. (2001)

and Neumann and Schwindt (2002) for project scheduling with renewable or storage resources,
respectively. The changeover times have been drawn at random such that the expected value of
changeover time ϑk

ij equals 0.25pi (k ∈ Rρ, i, j ∈ Vk). The objective function f has been chosen
to be the project duration, i.e., f(S) = Sn+1. The branch-and-bound algorithm has been coded
in ANSI C. For solving the maximum-flow problems, we have used Cherkassky and Goldberg’s
implementation of the preflow-push algorithm. The tests have been performed on a PII personal
computer with 333 MHz clock pulse, 128 MB RAM, and Windows NT 4.0 as operating system.

For the different numbers n of activities, Table 1 shows the percentages popt, pins, pnopt, and
punk of instances for which within an imposed running time limit of 100 seconds optimality of
the schedule found has been shown, insolvability has been shown, a feasible but not necessarily
optimal schedule has been found, or the solvability status has remained unknown. ∆LB denotes
the mean optimality gap for the best schedule found with respect to a lower bound LB on the
minimum project duration. In case where the algorithm has provided an optimal schedule, LB
coincides with the minimum project duration. Otherwise, LB equals the project duration which
arises from solving the resource relaxation at the root node.

n = 10 n = 20 n = 50 n = 100

popt 54.44% 62.22% 25.56% 8.89%

pins 45.56% 31.11% 24.44% 15.56%

pnopt 0.00% 6.67% 38.89% 48.89%

punk 0.00% 0.00% 11.11% 26.67%

∆LB 0.00% 4.03% 9.95% 7.25%

Table 1: Computational results

The results displayed in Table 1 show that the algorithm performs well for the small instances
with no more than 20 activities (for 174 of those 180 small projects, the enumeration could
be completed within the prescribed time limit). The fraction of instances solved to optimality
markedly decreases with increasing n. On the other hand, the values for the optimality gap
indicate that the algorithm is able to provide schedules with good accuracy for projects including
up to 100 activities. Nevertheless, for about one-fourth of the projects with 100 activities, the
enumeration is stopped before having found a feasible schedule. This behavior suggests the use
of a truncated branch-and-bound algorithm of type filtered beam search or limited discrepancy
search when coping with large-size problem instances.

References

[1] Bang-Jensen, J. and G. Gutin (2000). Digraphs: Theory, Algorithms and Applications.
Springer, Berlin.

[2] Bartusch, M., R.H. Möhring, and F.-J. Radermacher (1988). Scheduling project networks
with resource constraints and time windows. Annals of Operations Research 16, 201–240.

[3] Beck, J.C. (2002). Heuristics for scheduling with inventory: Dynamic focus via constraint
criticality. Journal of Scheduling 5, 43–69.

[4] Cherkassky, B.V. and A.V. Goldberg (1997). On implementing the push-relabel method for
the maximum flow problem. Algorithmica 19, 390–410.

[5] Franck, B., K. Neumann, and C. Schwindt (2001). Truncated branch-and-bound, schedule-
construction, and schedule-improvement procedures for resource-constrained project sched-
uling. OR Spektrum 23, 297–324.

[6] Laborie, P. (2003). Algorithms for propagating resource constraints in AI planning and
scheduling: Existing approaches and new results. Artificial Intelligence 143, 151–188.

[7] Möhring, R.H. (1985). Algorithmic aspects of comparability graphs and interval graphs. In
I. Rival (ed.): Graphs and Orders. D. Reidel Publishing Company, Dordrecht, pp. 41–101.

[8] Neumann, K. (2003). Project scheduling with changeover times: Modelling and applications.
Proceedings of IEPM 2003.

[9] Neumann, K. and C. Schwindt (2002). Project scheduling with inventory constraints. Math-
ematical Methods of Operations Research 56, 513–533.

[10] Schwindt, C. (2002). Introduction to Resource Allocation Problems in Project Management.
Habilitation thesis, University of Karlsruhe.

[11] Trautmann, N. (2003). Project scheduling with changeover times: Schedule feasibility and
network flows. Proceedings of IEPM 2003.

