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Abstract—We study the performance of storage and retrieval
systems executing single-command cycles under the closest eligi-
ble location rule. For each arriving storage or retrieval request,
this strategy assigns a storage location with minimum cycle time.
The performance of the storage and retrieval system is analyzed
in terms of different key performance indicators and indices, such
as expected cycle time, expected storage times, or storage-time
imbalance. Assuming that the arrivals of the storage requests as
well as the arrivals of the retrieval requests follow independent
Poisson processes, we propose Markov models for the evolution
of the spatial inventory distribution in the storage and develop
closed-form expressions for the stationary probabilities of a given
storage location being selected for a storage or retrieval request.
Based on these probabilities, we derive formulas for the key
performance indicators and indices and investigate characteristic
curves of the expected cycle time and the storage-time imbalance
in a numerical experiment. Some of the results obtained were
unexpected and disprove popular premises stated in widely-used
approaches for throughput analysis. Comparing our results to
those of alternative approaches from the literature shows thatthe
latter tend to significantly underestimate the expected maximum
system throughput of storage and retrieval systems. The analysis
also provides insights into the crucial role that the assignment of
storage locations plays in the performance of storage and retrieval
systems.

I. I NTRODUCTION

In warehouse design, appropriately dimensioning the stor-
age and retrieval (S/R) system presupposes an accurate model
of the system throughput under steady-state conditions. The
expected maximum system throughput, calculated from the
reciprocal expected cycle time, is largely influenced by the
storage and retrieval strategy, which defines the way in which
storage and retrieval requests are executed during warehouse
operation. Given a set of requests to be processed, the strategy
partitions the set into operation cycles of the S/R system and
allocates appropriate storage locations to each request. The
way in which the latter allocation is done will be referred
to as the storage assignment strategy. Disregarding the time
savings achieved by optimally allotting storage locationsto
storage and retrieval requests may heavily bias the throughput
analysis. Based on continuous-time Markov chains, we derive
analytical results for the expected cycle time and further key
performance indicators (KPIs) and indices of random storage
systems keeping multiple stock keeping units (SKUs). The
storage assignment strategy considered in this paper is the
closest eligible location (CEL) rule, which for each arriving
request selects a storage location allowing for a minimum cycle

time. Applied to storage requests exclusively, this strategy is
also called the closest open location (COL) rule.

The remainder of this paper is organized as follows. In
Sect. II we review the literature of performance evaluation
models for random storage systems operated under some
cycle-time aware storage assignment strategy. In Sect. III
we introduce the Markov models and present the analytical
results for different KPIs of S/R systems. Based on numerical
experiments, in Sect. IV we investigate characteristic curves
for the expected cycle time and the storage-time imbalance
and compare our results to alternative approaches from the
literature. A short summary and some remarks on future
research avenues are given in Sect. V.

II. L ITERATURE REVIEW

The estimation of expected cycle times for random stor-
age systems has been studied extensively in the literature.
According to the focus of our study, we only include papers
in our review which consider storage and retrieval strategies
aiming at small cycle times for random storage systems.
In their seminal paper [1], Hausman et al. asserted that in
case of stable capacity utilization over time, the COL rule
can be approximated reasonably well by the pure random
storage (PRS) strategy, which allocates storage locationsto
storage or retrieval requests in a non-optimized, purely random
way. Since then, this assumption has been adopted in many
modeling approaches for random storage systems, see, e. g.,
the handbook [2, pp. 659 f.] or the industry standards [3] and
[4]. However, recent simulation studies comparing the COL
rule with PRS show that the expected cycle times significantly
differ when the storage level is below 100 %, see, e. g., [5,
pp. 88 ff.].

The literature on analytical performance evaluation of
cycle-time aware storage and retrieval strategies is quitesparse.
Yamashita et al. [6] examine a unit-load single-SKU random
storage system replenished according to an(s, q) reordering
policy. After an exponentially distributed lead time, theq
reordered units are stored according to the COL rule in the
warehouse. The arrivals of retrieval requests follow a Poisson
process, and the storage location to be allocated to an entering
retrieval request is chosen at random among the currently
occupied storage locations. Starting from these assumptions,
the authors model the S/R system as a Markov chain and
develop an aggregation approach to reduce the state space
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and the computational effort for calculating the stationary
distribution of the stochastic process. Park and Lee [7] consider
a unit-load random storage system with Poisson arrivals of
the storage requests, which are served under the COL rule.
The authors premise i. i. d. storage times with a finite mean
Wℓ for each SKUℓ = 1, . . . , L. Under these assumptions,
the S/R system can be modeled as an Erlang loss system
with ordered entry, i. e., anM/G/N/N queueing system with
each customer taking the first idle server among the ordered
servers representing theN ordered storage locations. Note
that the mean storage time of a loading unit only depends
on SKU ℓ but is independent of the loading unit’s storage
location n. Moreover, constant mean storage times for SKU
ℓ imply that the arrival rate of retrieval requests must be
proportional to the current stock of SKUℓ. The assumptions
of the model may, e. g., be satisfied if for each SKUℓ the
arriving retrieval requests form a pure birth process with stock-
dependent intensities and the retrieval requests are served
according to the PRS strategy.

Besides these analytical models, there also exist heuristic
approaches. Fukunari and Malmborg [8] consider Poisson
arrivals of the storage requests and a known average storage
time of the stored SKUs, which is again independent of the
assigned storage location. To model this S/R system as an
M/M/N queueing system, they assume a hypothetical load
consolidation scenario, in which all SKUs are relocated after
each retrieval so that at any time, only the storage locations
nearest to the I/O point are occupied. The occupancy proba-
bility of each storage location is then approximated based on
the stationary probabilities for the number of customers inthe
queueing system. Due to the hypothetical load consolidation,
this model typically only provides rough estimations for real-
life storages. Malmborg [9] improves the accuracy of the
model by estimating the expected number of free storage
locations with a smaller distance to the I/O point than the
furthest occupied location. This approach is based on linear
regressions on the results of simulation studies.

To the best of our knowledge there is no analytical model
available in the open literature that considers the widely-used
storage and retrieval strategy minimizing the cycle time for
both storage and retrieval requests. We refer to this storage
assignment strategy as the CEL rule. The analytical approaches
mentioned above only take the COL rule for storage requests
into account but ignore the optimization potential of the anal-
ogous rule applied to retrieval requests. They assume random
storage allocation for the retrieval requests or known mean
storage times of the SKUs. Yamashita et al. [6] argue that the
CEL rule is not appropriate for practical use because loading
units at unfavorable locations may stay in the storage for a
very long time. Although the latter observation is correct,this
argument does not form an obstacle to the application of the
CEL strategy in practice. To avoid obsolescence of inventory,
it suffices to periodically retrieve loading units reachingcritical
storage times. Aside from these occasional FIFO retrievals, the
S/R system can then be operated under the CEL rule, which
allows for a significant increase in the maximum throughput of
the S/R system. In the next section, we introduce the Markov
models which form the basis of our throughput analysis.

III. M ATHEMATICAL MODEL

We consider a rack storage under random storage strategy
serviced by stacker cranes performing single-command cycles.
We assume that storage and retrieval requests of different
SKUs ℓ = 1, . . . , L are released according to independent
Poisson processes with intensitiesλℓ and µℓ, respectively,
and are executed in the sequence of their arrivals. Storage
locations are assigned to arriving storage and retrieval requests
following the CEL rule. Note that since this rule selects the
eligible storage location with minimum sum of the storage
and the retrieval cycle times, it is the optimum online storage
assignment strategy under our assumptions. If the storage
is full or empty, storage and retrieval requests, respectively,
are assumed to be lost. We further suppose that all requests
refer to single loading units like pallets and that each storage
location can hold exactly one loading unit of an arbitrary
SKU. For what follows, we establish the convention that the
N storage locationsn = 1, . . . , N are numbered in order of
nondecreasing cycle times.

In [10] we proposed an aggregation approach to calculate
the storage and retrieval access probabilities of each storage
location under these assumptions. To sketch the basic idea
of this approach, we briefly recapitulate the model for the
special case of homogeneous inventory of a single SKU.
Let {Y (t) | t ≥ 0} = {(Y1(t), . . . , YN (t)) | t ≥ 0} be the
stochastic process with state spaceE = {0, 1}

N modeling
the evolution of the inventory distributed over the storage
locations, whereYn(t) denotes the Bernoulli variable that
equals 1 if storage locationn is occupied at timet, and 0
otherwise. The feasible state transitions directly followfrom
the CEL rule. For each arriving request, the first feasible
location in the sequencen = 1, . . . , N of the storage locations
is selected, i. e., for a storage request the first free, and for
a retrieval request the first occupied location is chosen. The
respective transition rates correspond to the arrival rates λ and
µ of storage and retrieval requests for the single SKU. Since
the size of the state space grows exponentially with increasing
number N of storage locations, the stationary distribution
of the homogeneous and irreducible continuous-time Markov
chain {Y (t) | t ≥ 0} can only be computed for very small
instances. Similar to Yamashita et al. [6], we derive truncated
and aggregated versions of process{Y (t) | t ≥ 0} to reduce
the computational complexity. For fixedn ∈ {0, . . . , N}, we
consider the stochastic process{Z(n)(t) | t ≥ 0} with random
variablesZ(n)(t) counting the number of occupied locations
among the firstn storage locations. This process corresponds
to the throughput process of anM/M/1/n queueing system
with arrival rateλ and service rateµ and thus, the formulas for
the stationary probabilitiesπ(n)

k are known. According to the
PASTA property (Poisson arrivals see time averages, see [11,
p. 394]), arriving requests see the stationary distribution and we
obtain the following formulas for the stationary probabilities
PS(n) and PR(n) of storage locationn being chosen for a
storage and a retrieval request, respectively.

PS(n) = π
(n−1)
n−1 − π(n)

n (1a)

PR(n) = π
(n−1)
0 − π

(n)
0 (1b)

Storage locationn is assigned to a storage request if and only
if storage locations1 to n−1 are occupied and then-th storage
location is free. This holds true exactly if the firstn − 1 but
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not the firstn locations are occupied. Analogously, storage
location n is selected for a retrieval request if and only if
storage locations1 to n − 1 are empty and then-th storage
location contains a loading unit.

In [10] we mentioned that these results extend to the case
of multiple SKUs ℓ = 1, . . . , L. For given storage location
n ∈ {0, . . . , N}, we define the process{Z(n)(t) | t ≥ 0}

= {(Z
(n)
1 (t), . . . , Z

(n)
L (t)) | t ≥ 0} with random variables

Z
(n)
ℓ (t) counting the number of storage locations among the

first n locations occupied by SKUℓ at timet, which again is a
homogeneous and irreducible continuous-time Markov chain.
By E(n) = {(j1, . . . , jL) |

∑L
ℓ=1 jℓ ≤ n} we denote the state

space of the process{Z(n)(t) | t ≥ 0}. The following product-
form equations provide the stationary probabilitiesπ

(n)
(j1,...,jL),

whereρℓ =
λℓ

µℓ
:

π
(n)
(j1,...,jL) = π

(n)
(0,...,0) ·

L
∏

ℓ=1

ρjℓℓ , (j1, . . . , jL) ∈ E(n) (2a)

n
∑

k=0

∑

j1,...,jL:
j1+···+jL=k

π
(n)
(0,...,0) ·

L
∏

ℓ=1

ρjℓℓ = 1 (2b)

According to (2b), the normalization constants

c(n) :=
(

π
(n)
(0,...,0)

)

−1

=
n
∑

k=0

∑

j1,...,jL:
j1+···+jL=k

L
∏

ℓ=1

ρjℓℓ (3)

of {Z(n)(t) | t ≥ 0} can be computed recursively using
Buzen’s convolution algorithm [12] for the normalization con-
stant of a Gordon-Newell network. Applying the same argu-
ments as for homogeneous inventory, the access probabilityof
storage locationn for storage requests is

PS(n) =
∑

j1,...,jL:
j1+...+jL=n−1

π
(n−1)
(j1,...,jL) −

∑

j1,...,jL:
j1+...+jL=n

π
(n)
(j1,...,jL).

(4)
Using the normalization constants, (4) can be rewritten as

PS(n) =
c(n− 1)

c(n)
−

c(n− 2)

c(n− 1)
. (5)

Whereas the storage access probability of storage locationn
coincides for all types of SKUℓ = 1, . . . , L, the retrieval
access probability depends onℓ. The probability of storage
locationn being chosen for a retrieval request of item typeℓ
is given by

PR(ℓ, n) =
∑

j1,...,jL:
jℓ=0

π
(n−1)
(j1,...,jL) −

∑

j1,...,jL:
jℓ=0

π
(n)
(j1,...,jL)

= ρℓ · PS(n). (6)

For the retrieval access probability of storage locationn, we
obtain

PR(n) =
1

∑L
ℓ=1 µℓ

L
∑

ℓ=1

µℓ · PR(ℓ, n)

= ρ · PS(n) (7)

with ρ = λ/µ =
∑L

ℓ=1 λℓ/
∑L

ℓ=1 µℓ. Recall that storage and
retrieval requests are lost if they cannot be served immediately.
Since the probabilitiesPS(n) andPR(n) refer to all arriving
requests, the service levels of the S/R system for storage and
retrieval requests are given by

αS =

N
∑

n=1

PS(n) =
c(N − 1)

c(N)
(8)

αR =
N
∑

n=1

PR(n) = ρ · αS . (9)

To obtain the expected cycle time, the storage and retrieval
access probabilities referring to requests that enter the S/R
system have to be considered. According to the service levels
in (8) and (9), the expected cycle time for single-command
cycles equals

t̄ =
N
∑

n=1

t(n)

[

λ

λ+ µ
·
PS(n)

αS
+

µ

λ+ µ
·
PR(n)

αR

]

=

N
∑

n=1

t(n) ·
PS(n)

αS
(10)

with t(n) denoting the mean of the single-command storage
and the single-command retrieval cycle times for storage
location n. Note that the normalized access probabilities co-
incide for storage and retrieval requests, i. e.,PS(n)/αS =
PR(n)/αR. This finding is plausible because for a specific
storage location, storages and retrievals always alternate. The
latter observation has been exploited in the analysis of Park
and Lee [7].

The mathematical model presented above allows for the
evaluation of further indices and KPIs for the steady-stateS/R
system. First, we consider the expected number of loading
units of SKUℓ = 1, . . . , L stored in the warehouse. According
to [11, p. 581], this number can be computed as

n̄ℓ =

N
∑

n=1

ρnℓ ·
c(N − n)

c(N)
. (11)

The mean occupancy rate is given by the ratio of the expected
number of occupied storage locations and the capacityN of
the storage:

Γ =
1

N
·

L
∑

ℓ=1

n̄ℓ (12)

By applying Little’s law, we obtain the expected storage time
a loading unit of SKUℓ = 1, . . . , L spends in the S/R system:

Wℓ =
n̄ℓ

αS · λℓ
(13)

While these indices refer to the S/R system as a whole,
we now turn to location-specific parameters. Due to the as-
sumption of unit-load locations and requests, the steady-state
occupancy of storage locationn is a binary random variable
Y (n) and the occupancy rate of storage locationn, similarly

46



to [13, p. 89], arises as

γn = P
(

Y (n) = 1
)

= E
[

Y (n)
]

= E

[

L
∑

ℓ=1

Z
(n)
ℓ

]

− E

[

L
∑

ℓ=1

Z
(n−1)
ℓ

]

= 1−
1

c(n)

n−1
∑

ν=0

c(ν) +
1

c(n− 1)

n−2
∑

ν=0

c(ν). (14)

In (14), the occupancy rateγn equals the difference of the
total expected number of occupied storage locations among the
first n andn− 1 storage locations, respectively. Based on the
stationary analysis of the process{Z(n)(t) | t ≥ 0} and some
elementary calculus, these expected values can be written in
terms of the normalization constants. Once the occupancy rate
of each storage locationn is known, the expected storage time
of a loading unit in storage locationn is obtained according
to Little’s law as follows:

wn =
γn

λ · PS(n)
(15)

Finally, we examine the special case ofρℓ = 1 for all
SKUs ℓ = 1, . . . , L in more detail. This case is particularly
relevant because for most practical applications, in the long-
run the reorder or production rateλℓ should coincide with the
demand rateµℓ for each SKUℓ. Based on our closed queueing
network model, after some combinatorial calculus we obtain
the following simplified expressions:

PS(n) = PR(n) =
L

(n+ L− 1)(n+ L)
(16a)

αS = αR =
N

N + L
(16b)

Γ = γn =
L

L+ 1
(16c)

wn =
(n+ L− 1)(n+ L)

λ(L+ 1)
(16d)

The first formulas confirm the intuition of access probabilities
decreasing in the indexn of the storage location. This means
that the larger the distance to the I/O point, the less frequently
the location is selected for a storage or retrieval request.The
storage and the retrieval service levels coincide and deteriorate
with growing numberL of SKUs. Furthermore, the occupancy
rates are identical for all storage locationsn and increase inL.
Finally, the last equation shows that, as expected, the mean
storage time grows with increasing indexn of the storage
location. However, the storage time remains quadratically
bounded inn.

IV. N UMERICAL EXPERIMENTS

In this section, we report on the results of numerical
experiments that we performed using our Markov model. First,
we present the characteristic curves for the expected cycletime
and the storage-time imbalance as functions of the storage
capacityN and the numberL of SKUs. Then, we compare
the outcome of our throughput analysis with the results of
alternative approaches from the literature. The analysis is based
on the storage rack of a high bay warehouse with 10 levels, 60
bays, square storage locations, and a single I/O point located
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Fig. 1. Expected cycle time as a function of the total number of storage
locations

in the bottom left corner considered in [10]. Assuming that
the stacker crane can move simultaneously in horizontal and
vertical directions with the same velocity in both directions, the
travel times to the storage locations are calculated according to
the Tchebychev metric. Furthermore, we suppose thatλℓ = µℓ

and henceρℓ = 1 for all SKUs ℓ = 1, . . . , L.

A. Characteristic curves

In what follows, we interpret the KPIs and indices of a stor-
age as functions of the dimensional parametersN andL. For
certain KPIs and indices these functions depend on the selected
storage and retrieval strategy. In particular, this holds true for
the expected cycle time and the storage-time imbalance. We
have chosen these two KPIs due to their relevance to storage
design and because the CEL rule is intended to minimize
the expected cycle time at the cost of an increased storage-
time imbalance. In the second subsection we will compare
the performance of the CEL rule with respect to these two
KPIs against the scenario considered in the model of Park and
Lee [7].

At first, we analyze the relationship between the expected
cycle time and the storage capacityN . Since the cycle time
depends on the arrangement of the storage locations, we
consider a square as well as a rectangular storage rack. For the
rectangular layout, we start with the storage rack containing
600 storage locations arranged in 10 levels and 60 bays. We
then obtain further instances by iteratively adding or removing
one level and one bay. In the same way, we construct the
instances for the square layout starting with 25 levels and 25
bays. Fig. 1 shows the resulting characteristic curves for both
layout types. Somewhat surprisingly, the lines show opposing
trends for the two layout types. Whereas for the square storage
rack, the expected cycle time grows with increasing capacity,
it decreases for the rectangular layout. This effect can be
explained as follows. In the square layout, each of the storage
locations that is added to an existing storage rack is associated
with a maximum cycle time. This observation is not true for the
rectangular layout, in which typically the distances between the
I/O point and some of the added storage locations are smaller
than for certain storage locations contained in the previous
configuration.

The characteristic curve in Fig. 2 displays the relationship
between the expected cycle time and the numberL of SKUs
for the original rectangular layout with 600 storage locations.
The results show that the expected cycle time is an increasing
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Fig. 3. Storage-time imbalance as a function of the total numberof storage
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and concave function in the number of SKUs stored in the
warehouse. In [10] it is mentioned forρℓ = 1 for all SKUs ℓ
that t̄ attains the expected cycle time of the PRS rule asL
tends to infinity, the latter cycle time being independent ofL.

Next, we turn to the expected storage time of each storage
locationn. As an aggregate KPI, we propose the storage-time
imbalance, which we define to be the percentage of storage
locations for which the expected storage time of SKUs exceeds
the double of the total mean obtained by averaging over all
storage locations. Storage capacityN is varied by considering
the same rectangular layouts as before. Fig. 3 reveals that the
storage-time imbalance is only little affected by the storage
capacity. The curve shows a global trend towards increasing
imbalance for larger storage racks. However, note that the
function is not consistently increasing since the storage-time
imbalance decreases with growingN until the storage time of
a further storage location exceeds the threshold.

Finally, we investigate the relationship between the storage-
time imbalance and the numberL of SKUs for the scenario
with 600 storage locations. The characteristic curve in Fig. 4
shows that this relation follows a decreasing, almost linear step
function. The more types of SKUs are stored in the warehouse,
the less storage locations contain loading units over a long
time. Since forL → ∞, the storage behaves like under the
PRS rule, the storage-time imbalance tends to zero when the
number of SKUs becomes large. In sum, the curves of Figs. 3
and 4 suggest that obsolescence of inventory does not pose a
serious obstacle to the application of the CEL rule.
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Fig. 4. Storage-time imbalance as a function of the number of SKUs

TABLE I. COMPARISON TO MODELS ASSUMING UNIFORM

DISTRIBUTION

Model MM(1) MM(3) MM(5) MM(10) MM(15) UD

t̄ 3.12 5.34 6.86 9.61 11.69 60.55

δtv 0.92 0.87 0.83 0.77 0.73 −

B. Comparison with previous approaches

We proceed by putting the performance of the CEL rule
into perspective with the results obtained for strategies where
locations are, at least to some extent, chosen at random. At
first, we revisit the experiments discussed in [10]. In this
study, we compared Hausman et al.’s classical assumption of
uniformly distributed access probabilities (UD model), i.e., an
S/R system operated under the PRS strategy, with the access
probabilities arising from our Markov model for the CEL rule
(model MM(L), with L as the number of SKUs). Table I
displays the expected cycle timēt for the different models.
Moreover, as a measure of inaccuracy for the UD model, we
provide the total variation distancesδtv between the uniform
distribution and the normalized storage (and retrieval) access
probabilitiesPS(n)/αS . The results show that when the S/R
system is operated under the CEL rule and the number of SKUs
is relatively small, assuming a uniform distribution heavily
underestimates the maximum system throughput, which seems
to be contrary to the assertion of Hausman et al. mentioned in
Sect. II. As a consequence, applying the industry standards[3]
and [4] may lead to a largely oversized S/R system. We notice,
however, that the expected cycle time significantly increases
and hence the error of the UD model diminishes when the
numberL of SKUs increases, as visualized in Fig. 2. This
observation is confirmed by the decrease of the total variation
distance with growing numberL of SKUs. Recall that the
normalized storage (and retrieval) access probabilities converge
to the uniform distribution asL tends to infinity. However,
the convergence may be rather slow. In our example with
600 storage locations, an acceptable total variation distance of
5 % is only attained with more than 2700 types of items. The
lessons learnt from the experiments can also be put differently.
Given that the UD assumption is satisfied if the storage is
operated under the PRS strategy, the large gaps between the
expected cycle times provide evidence for the considerable
optimization potential of the CEL rule.

Finally, we compare our model to the approach by Park and
Lee [7], which represents an S/R system that is run applying
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TABLE II. E XPECTED CYCLE TIMES OFPARK AND LEE’ S MODEL

Model PL(1) PL(3) PL(5) PL(10) PL(15)

t̄ 31.72 46.56 51.69 56.50 58.07
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Fig. 5. Comparison of access probabilities

the COL rule to the storage requests. For the purpose of
comparison, we calculate the mean storage timeWℓ yielded
by (13) of our model for each SKUℓ. Subsequently, we insert
the values ofWℓ as parameters into the model of Park and
Lee and compute the storage and retrieval access probabilities
according to their formulas. The resulting expected cycle times
t̄ are displayed in Table II, where PL(L) stands for the model
of Park and Lee withL SKUs.

The results show that the model by Park and Lee does
not underestimate the maximum system throughput as much
as the UD model, but the resulting expected cycle times are
still significantly higher than those of our Markov model. For
the instance withL = 15, a closer look to the normalized
storage access probabilitiesPS(n)/αS of the first 50 storage
locations in Fig. 5 reveals that in our model, the chances of
favorable storage locations being assigned to a storage request
are significantly higher than those of the Park and Lee model.
It came as a surprise to us that the probabilities computed
by the approach of Park and Lee only slightly deviate from
the uniform distribution. This seems to indicate that their
assumptions, especially with respect to i. i. d. storage times,
do not comply with a storage and retrieval strategy minimizing
the expected cycle time. As it is shown by (16d), the expected
storage timewn of a loading unit is a quadratic function in
the location indexn, which clearly contradicts the premise of
identically distributed storage times.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed Markov models for the system
throughput analysis of S/R systems executing single-command
cycles under the CEL rule. We showed how the expected
cycle time and further KPIs and indices of S/R systems can
be calculated efficiently based on aggregate Markov models.
As a major finding we could demonstrate that in contrast to a
conjecture stated in the literature, inventory obsolescence is not
a big issue when applying the CEL strategy. Comparing our
results with alternative approaches from the literature reveals
that the latter may significantly underestimate the maximum
system throughput. Future research will be concerned with
extending the models to dual-command cycles and considering
batch arrivals of the storage and retrieval requests.
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