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Abstract—We study the performance of storage and retrieval  time. Applied to storage requests exclusively, this sgpatis
systems executing single-command cycles under the closest eligi- also called the closest open location (COL) rule.
ble location rule. For each arriving storage or retrieval request,
this strategy assigns a storage location with minimum cycle time. The remainder of this paper is organized as follows. In
The performance of the storage and retrieval system is analyzed Sect. || we review the literature of performance evaluation
in terms of different key performance indicators and indices, such  models for random storage systems operated under some
as expected cycle time, expected storage times, or storage-time cycle-time aware storage assignment strategy. In Sect. IlI
imbalance. Assuming that the arrivals of the storage requests as \ye introduce the Markov models and present the analytical
well as the arrivals of the retrieval requests follow independent results for different KPIs of S/R systems. Based on numkrica
Poisson processes, we propose Markov models for the evolution experiments, in Sect. IV we investigate characteristiovesir

of the spatial inventory distribution in the storage and develop for the expected cvcle time and the storage-time imbalance
closed-form expressions for the stationary probabilities of a give P y 9

storage location being selected for a storage or retrieval reques ~@nd compare our results to alternative approaches from the
Based on these probabilities, we derive formulas for the key literature. A short summary and some remarks on future
performance indicators and indices and investigate characteristic research avenues are given in Sect. V.

curves of the expected cycle time and the storage-time imbalance

in a numerical experiment. Some of the results obtained were

unexpected and disprove popular premises stated in widely-used Il. LITERATURE REVIEW

approaches for throughput analysis. Comparing our results to The estimation of expected cycle times for random stor-

those of alternative approaches from the literature shows thathe age svstems has been studied extensivelv in the literature
latter tend to significantly underestimate the expected maximum g Yy y )

system throughput of storage and retrieval systems. The anatjs ~ According to the focus of our study, we only include papers
also provides insights into the crucial role that the assignment of N our review which consider storage and retrieval stragi

storage locations plays in the performance of storage and retrieat aiming at small cycle times for random storage systems.

systems. In their seminal paper [1], Hausman et al. asserted that in

case of stable capacity utilization over time, the COL rule

I. INTRODUCTION can be approximated reasonably well by the pure random

| h desi itely di ioning th storage (PRS) strategy, which allocates storage locations
n warehouse design, appropriately dimensioning the Storsi,rage or retrieval requests in a non-optimized, pureigoan

age and retrieval (S/R) system presupposes an accuratd mo y. Since then, this assumption has been adopted in many

of the system_throughput under steady-state conditions. Thmodeling approaches for random storage systems, see, e.g.,
expected maximum system throughput, calculated from the,e handhook [2, pp. 6591.] or the industry standards [3] and
reciprocal expected cycle time, is largely influenced by they However, recent simulation studies comparing the COL

storage and retri_eval strategy, which defines the way in fwvhic 1 e with PRS show that the expected cycle times signifigantl
storage and retrieval requests are executed during wasehoUyitter when the storage level is below 100%, see, e.g., [5
operation. Given a set of requests to be processed, theggtrat pp. 88 1], ' ' T

partitions the set into operation cycles of the S/R systeth an
allocates appropriate storage locations to each requést. T  The literature on analytical performance evaluation of
way in which the latter allocation is done will be referred cycle-time aware storage and retrieval strategies is gpiese.

to as the storage assignment strategy. Disregarding the tinYamashita et al. [6] examine a unit-load single-SKU random
savings achieved by optimally allotting storage locatitas storage system replenished according to(&ry) reordering
storage and retrieval requests may heavily bias the thputgh policy. After an exponentially distributed lead time, the
analysis. Based on continuous-time Markov chains, we derivreordered units are stored according to the COL rule in the
analytical results for the expected cycle time and furthey k warehouse. The arrivals of retrieval requests follow a $twis
performance indicators (KPIs) and indices of random s®ragprocess, and the storage location to be allocated to anramnter
systems keeping multiple stock keeping units (SKUs). Theetrieval request is chosen at random among the currently
storage assignment strategy considered in this paper is tleecupied storage locations. Starting from these assungtio
closest eligible location (CEL) rule, which for each amgi the authors model the S/R system as a Markov chain and
request selects a storage location allowing for a minimuatecy develop an aggregation approach to reduce the state space
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and the computational effort for calculating the statignar I1l. M ATHEMATICAL MODEL

distribution of the stochastic process. Park and Lee [7}iwter év We consider a rack storage under random storage strategy

a unit-load random storage system with Poisson arrivals of _ . ' :
the storage requests, which are served under the COL rul erviced by stacker cranes performing single-commancsycl

The authors premise i.i.d. storage times with a finite mearg
W, for each SKU/ = 1,..., L. Under these assumptions,
the S/R system can be modeled as an Erlang loss syst
with ordered entry, i.e., aM/G/N/N queueing system with
each customer taking the first idle server among the ordere
servers representing th& ordered storage locations. Note
that the mean storage time of a loading unit only depend§
on SKU ¢ but is independent of the loading unit's storage
location n. Moreover, constant mean storage times for SKU
¢ imply that the arrival rate of retrieval requests must be
proportional to the current stock of SKW The assumptions
of the model may, e.g., be satisfied if for each SKUhe
arriving retrieval requests form a pure birth process wititls-
dependent intensities and the retrieval requests are dserv
according to the PRS strategy.

e assume that storage and retrieval requests of different
KUs/? = 1,...,L are released according to independent
ePoisson processes with intensitiag and p,, respectively,
Ihd are executed in the sequence of their arrivals. Storage
lgcations are assigned to arriving storage and retrievplasts
llowing the CEL rule. Note that since this rule selects the
ligible storage location with minimum sum of the storage
nd the retrieval cycle times, it is the optimum online sfara
assignment strategy under our assumptions. If the storage
is full or empty, storage and retrieval requests, respelgtiv
are assumed to be lost. We further suppose that all requests
refer to single loading units like pallets and that eachager
location can hold exactly one loading unit of an arbitrary
SKU. For what follows, we establish the convention that the
N storage locations, = 1,..., N are numbered in order of
nondecreasing cycle times.

In [10] we proposed an aggregation approach to calculate
Besides these analytical models, there also exist hauristthe storage and retrieval access probabilities of eaclagor
approaches. Fukunari and Malmborg [8] consider Poissotocation under these assumptions. To sketch the basic idea
arrivals of the storage requests and a known average storagé this approach, we briefly recapitulate the model for the
time of the stored SKUs, which is again independent of thespecial case of homogeneous inventory of a single SKU.
assigned storage location. To model this S/R system as dret {Y(¢) |t >0} = {(Yi(¢),...,Yn(t)) |t >0} be the
M/M/N queueing system, they assume a hypothetical loadtochastic process with state spaBe= {0, 1} modeling
consolidation scenario, in which all SKUs are relocateéraft the evolution of the inventory distributed over the storage
each retrieval so that at any time, only the storage locationiocations, whereY;,(t) denotes the Bernoulli variable that
nearest to the 1/0 point are occupied. The occupancy probaquals 1 if storage location is occupied at timet, and 0
bility of each storage location is then approximated based ootherwise. The feasible state transitions directly follfram
the stationary probabilities for the number of customerth@&  the CEL rule. For each arriving request, the first feasible
queueing system. Due to the hypothetical load consolidatio |ocation in the sequence= 1,..., N of the storage locations
this model typically only provides rough estimations foalre is selected, i.e., for a storage request the first free, and fo
life storages. Malmborg [9] improves the accuracy of thea retrieval request the first occupied location is choser Th
model by estimating the expected number of free storageespective transition rates correspond to the arrivabratend
locations with a smaller distance to the I/O point than they, of storage and retrieval requests for the single SKU. Since
furthest occupied location. This approach is based on Hineahe size of the state space grows exponentially with inangas
regressions on the results of simulation studies. number N of storage locations, the stationary distribution
of the homogeneous and irreducible continuous-time Markov
chain {Y'(¢t) | t > 0} can only be computed for very small
To the best of our knowledge there is no analytical modeinstances. Similar to Yamashita et al. [6], we derive trieda
available in the open literature that considers the widelgel  and aggregated versions of proceds(t) | ¢t > 0} to reduce
storage and retrieval strategy minimizing the cycle time fo the computational complexity. For fixed € {0,..., N}, we
both storage and retrieval requests. We refer to this storagconsider the stochastic procesg(™ (¢) | t > 0} with random
assignment strategy as the CEL rule. The analytical aphesac variablesZ ("™ (t) counting the number of occupied locations
mentioned above only take the COL rule for storage requestgmong the first. storage locations. This process corresponds
into account but ignore the optimization potential of thalan tg the throughput process of a1 /M /1/n queueing system
ogous rule applied to retrieval requests. They assume mandowith arrival rate\ and service ratg and thus, the formulas for
storage allocation for the retrieval requests or known meag,e stationary probabilities,i”) are known. According to the
storage times of the SKUs. Yamashita et al. [6] argue that theasTA property (Poisson arrivals see time averages, see [11
CEL rule is not appropriate for practical use because Icgadmp' 394]), arriving requests see the stationary distrilougind we
units at unfavorable locations may stay in the storage for @ptain the following formulas for the stationary probatis

very long time. Although the latter observation is correis Ps(n) and Pg(n) of storage locatiom being chosen for a
argument does not form an obstacle to the application of thgigrage and a retrieval request, respectively.

CEL strategy in practice. To avoid obsolescence of invgntor

it suffices to periodically retrieve loading units reachargical Ps(n) = wfln:ll) — wfl") (1a)
storage times. Aside from these occasional FIFO retrietias Pr(n) = =1 () (1b)
S/R system can then be operated under the CEL rule, which BB =70 0

allows for a significant increase in the maximum throughgut o Storage locatiom is assigned to a storage request if and only
the S/R system. In the next section, we introduce the Markovf storage locationg to n—1 are occupied and the-th storage
models which form the basis of our throughput analysis. location is free. This holds true exactly if the first— 1 but
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not the firstn locations are occupied. Analogously, storagewith p = \/p = Zle e/ Zle 1e. Recall that storage and
location n is selected for a retrieval request if and only if retrieval requests are lost if they cannot be served imntedglia
storage locationd to n — 1 are empty and the:-th storage Since the probabilities®s(n) and Pg(n) refer to all arriving
location contains a loading unit. requests, the service levels of the S/IR system for storade an

. retrieval requests are given b
In [10] we mentioned that these results extend to the case q g y

of multiple SKUs/? = 1,...,L. For given storage location N

n € {0,...,N}, we define the proces§Z™ (t) | t > 0} as=Y Ps(n)= N -1) 8)
= {(Z™@®),....2" @) | t > 0} with random variables oy c(N)

Zé") (t) counting the number of storage locations among the N

first n locations occupied by SKU at time¢, which again is a ap=» Pr(n)=p-as. 9)
homogeneous and irreducible continuous-time Markov chain n=1

By E™ = {(ji,...,j1) | 2t je < n} we denote the state
space of the procedsZ(™ (t) | t > 0}. The following product-
form equations provide the stationary probabilit'réjéll)

wherep, = 2£:

To obtain the expected cycle time, the storage and retrieval
access probabilities referring to requests that enter tie S

JL)’ system have to be considered. According to the servicedevel
in (8) and (9), the expected cycle time for single-command

cycles equals
L

TG =m0 LAk Grdn) € O ()
(=1

A Ps() . u Paln)
A4 p ag Ap ar

]"I
] =

t(n) [

n=1

n L
(n) Je
S Y o« : —1 (2b) N
(0,...,0) 1~ Ps(n)
= 1505 JL¢ = = t(n) - (10)
o fud, 21

n

According to (2b), the normalization constants with ¢(n) denoting the mean of the single-command storage

1 n L and the single-command retrieval cycle times for storage
= (7™ = Je location n. Note that the normalized access probabilities co-
em) = (ng) o) = gl (3 locationn. _ s p
(0,---0) kzzo jl;jy g ‘ incide for storage and retrieval requests, i.Bg(n)/as =
Jite =k Pr(n)/ag. This finding is plausible because for a specific
storage location, storages and retrievals always alterrdte

of {Z")(#) | t > 0} can be computed recursively using |atter observation has been exploited in the analysis ok Par
Buzen's convolution algorithm [12] for the normalizatioare 5 Lee [7].

stant of a Gordon-Newell network. Applying the same argu-
ments as for homogeneous inventory, the access probatifility =~ The mathematical model presented above allows for the

storage locatiom for storage requests is evaluation of further indices and KPIs for the steady-s&ife
(n-1) (n) system. First, we consider the expected number of loading
Ps(n) = Z T i) — Z Tindn)” units of SKUZ = 1, ..., L stored in the warehouse. According
J1sedL JiseendLt to [11, p. 581], this number can be computed as
ji+..+jr=n—1 Jit...+jL=n
4) N
Using the normalization constants, (4) can be rewritten as iy = n (N —n) 11
=0 o) (11)
Ps(n) = c(n—1) ¢en-2) 5) n=1
s c(n) c(n—1) The mean occupancy rate is given by the ratio of the expected
Whereas the storage access probability of storage location "Umber of occupied storage locations and the capaityf
coincides for all types of SKUW = 1,...,L, the retrieval the storage:
access probability depends d@n The probability of storage 1 &
locationn being chosen for a retrieval request of item type r= A Zm (12)
is given by =1
Pr(t,n) = Z WET_L—U . Z WE@ - By applying Little’s law, we obtain the expected storageetim
P Tk P Tk a loading unit of SKW = 1, ..., L spends in the S/R system:
je=0 Je=0 _
— - Ps(n). 6) W, = —% (13)
ag - )\g
For the retrieval access probability of storage locatigrwe
obtain While these indices refer to the S/R system as a whole,
1 L we now turn to location-specific parameters. Due to the as-
Pr(n) = —¢ Zw - Pr(f,n) sumption of unit-load locations and requests, the stesatg-s
D=1 e 2 occupancy of storage locatian is a binary random variable
=p- Ps(n) (7) Y and the occupancy rate of storage locatignsimilarly
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to [13, p. 89], arises as "

r’g‘
Yn =P (Y(n) = 1) =F [Y(n)} £ 13 1
L L % 12 | rectangular layout
g
=Nz -E Yz T 11
(=1 =1 g 10 A ./.,.—l"".’.—._.—._‘.
1 n—1 1 n—2 g' square layout
=1—-—S W)+ ——S cv). @14) 7
T 2 T & -
i 400 600 800 1000
In (14), the occupancy rate, equals the difference of the number of storage locations\()

total expected number of occupied storage locations anfang t

first n andn — 1 storage locations, respectively. Based on thei9- 1. Expected cycle time as a function of the total numbertofage
stationary analysis of the procesg(™(t) | t > 0} and some '°¢ations

elementary calculus, these expected values can be written i

terms of the normalization constants. Once the occupariey rajn the hottom left corner considered in [10]. Assuming that
of each storage location is known, the expected storage time he stacker crane can move simultaneously in horizontal and
of a loading unit in storage location is obtained according yertical directions with the same velocity in both direcothe

to Little's law as follows: travel times to the storage locations are calculated aouptd
w. — Tn (15) the Tchebychev metric. Furthermore, we supposethat 1,
"X Ps(n) and hencep, =1 for all SKUs¢ =1,..., L.
Finally, we examine the special case @f = 1 for all A. Characteristic curves
SKUs ¢ = 1,..., L in more detail. This case is particularly . I
relevant because for most practical applications, in tmg4o In what follows, we interpret the KPIs and indices of a stor-

run the reorder or production rate should coincide with the g€ as functions of the dimensional parameférand L. For
demand rate, for each SKU/. Based on our closed queueing certain KPIs and indices these functions depend on thetedlec

network model, after some combinatorial calculus we obtairptorage and retrieval strategy. In particular, this hotds for

the following simplified expressions: the expected cycle time and the storage-time imbalance. We
have chosen these two KPIs due to their relevance to storage

Ps(n) = Pr(n) = L (16a) design and because the CEL rule is intended to minimize
(n+L—-1)(n+L) the expected cycle time at the cost of an increased storage-

N time imbalance. In the second subsection we will compare

a5 =OR =7 (16b)  the performance of the CEL rule with respect to these two

I KPls against the scenario considered in the model of Park and

(n+L—-1)(n+ L) At first, we analyze the relationship between the expected

n = AL +1) (16d) cycle time and the storage capacity. Since the cycle time

) ) o _ . depends on the arrangement of the storage locations, we
The first formulas confirm the intuition of access probaietit  consider a square as well as a rectangular storage rackhéor t
decreasing in the index of the storage location. This means rectangular layout, we start with the storage rack containi
that the larger the distance to the I/O point, the less fretiye 500 storage locations arranged in 10 levels and 60 bays. We
the location is selected for a storage or retrieval requE®t.  then obtain further instances by iteratively adding or reimgp
storage a_nd the retrieval service levels coincide and ided®®  gne |evel and one bay. In the same way, we construct the
with growing numbetL of SKUs. Furthermore, the occupancy instances for the square layout starting with 25 levels ahd 2
rates are identical for a}II storage locationand increase ifL. bays. Fig. 1 shows the resulting characteristic curves éoh b
Finally, the last equation shows that, as expected, the meggyout types. Somewhat surprisingly, the lines show opypsi
storage time grows with increasing index of the storage {rends for the two layout types. Whereas for the square storag
location. .However, the storage time remains quadraticallyack, the expected cycle time grows with increasing capacit
bounded inn. it decreases for the rectangular layout. This effect can be
explained as follows. In the square layout, each of the gtora
IV. NUMERICAL EXPERIMENTS locations that is added to an existing storage rack is ast®ati
with a maximum cycle time. This observation is not true fa th
rectangular layout, in which typically the distances betwthe
I/O point and some of the added storage locations are smaller
than for certain storage locations contained in the previou
gc?"onfiguration.

In this section, we report on the results of numerical
experiments that we performed using our Markov model. First
we present the characteristic curves for the expected tiyote
and the storage-time imbalance as functions of the storal
capacity N and the numbed, of SKUs. Then, we compare
the outcome of our throughput analysis with the results of The characteristic curve in Fig. 2 displays the relatiopshi
alternative approaches from the literature. The analgdissed between the expected cycle time and the numbaf SKUs
on the storage rack of a high bay warehouse with 10 levels, 6fbr the original rectangular layout with 600 storage looas.
bays, square storage locations, and a single I/O pointddcat The results show that the expected cycle time is an incrgasin
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Fig. 2. Expected cycle time as a function of the number of SKUs Fig. 4. Storage-time imbalance as a function of the number of SKU
TABLE I. COMPARISON TO MODELS ASSUMING UNIFORM
DISTRIBUTION
[}
o
8 Model | MM(1) MM(@3) MM() MM(10) MM(15) ubD
[
£ 0.19 t 3.12 5.34 6.86 9.61 11.69 | 60.55
,é 0.18 - Stv 0.92 0.87 0.83 0.77 0.73 —
o ./._/*_V'_H
[=))
S 0.17 A
o . . .
17 B. Comparison with previous approaches

00 600 800 1000 We proceed by putting the performance of the CEL rule
into perspective with the results obtained for strategibene
locations are, at least to some extent, chosen at random. At
Fig. 3. Storage-time imbalance as a function of the total nurobstorage  first, we revisit the experiments discussed in [10]. In this
locations study, we compared Hausman et al.'s classical assumption of

uniformly distributed access probabilities (UD modelg.j.an

S/R system operated under the PRS strategy, with the access
and concave function in the number of SKUs stored in thedrobabilities arising from our Markov model for the CEL rule
warehouse. In [10] it is mentioned fa, = 1 for all SKUs¢  (model MM(L), with L as the number of SKUs). Table |
that ¢ attains the expected cycle time of the PRS ruleLas displays the expected cycle timtefor the different models.

tends to infinity, the latter cycle time being independent.of ~Moreover, as a measure of inaccuracy for the UD model, we
provide the total variation distancés, between the uniform

Next, we turn to the expected storage time of each storagd'Stribution and the normalized storage (and retrievateas
locationn. As an aggregate KPI, we propose the storage-tim@robabilities Ps(n)/ais. The results show that when the S/R
imbalance, which we define to be the percentage of storageyStem is operated under the CEL rule and the number of SKUs
locations for which the expected storage time of SKUs exseedS 'elatively small, assuming a uniform distribution hégvi
the double of the total mean obtained by averaging over alfnderestimates the maximum system throughput, which seems
storage locations. Storage capadlyis varied by considering to be contrary to the assertion of Hausmgn et al. mentioned in
the same rectangular layouts as before. Fig. 3 revealsthat t S€Ct: Il. As a consequence, applying the industry standaids
storage-time imbalance is only little affected by the sjera and [4] may lead to a largely oversized S/R system. We notice,

capacity. The curve shows a global trend towards increasinfOWeVver. that the expected cycle time significantly incesas
imbalance for larger storage racks. However, note that th&nd Qence ]:che error of the UD model I@m&mshe_s w2hen ht.he
function is not consistently increasing since the stotige-  NUMPer L of SKUs increases, as visualized in Fig. 2. This

imbalance decreases with growing until the storage time of observation is confirmed by the decrease of the total variati
a further storage location exceeds the threshold. distance with growing numbef of SKUs. Recall that the

normalized storage (and retrieval) access probabiliteserge
to the uniform distribution ad. tends to infinity. However,
the convergence may be rather slow. In our example with
600 storage locations, an acceptable total variation mtistaf

; ; ; . 5% is only attained with more than 2700 types of items. The
shows that this relation follows a decreasing, almost liséep lessons leant from the experiments can also be put diflgren

function. The more types of SKUs are stored in the warehouseGiven that the UD assumption is satisfied if the storage is

the less storage locations contain loading units over a Iongperated under the PRS strategy, the large gaps between the

E)gg S;nc?hforLt — OOE. the.stgraltge betha\éesthke undir thi“ expected cycle times provide evidence for the considerable
rulé, the storage-ime imbajance tends 1o zero When Mz ation potential of the CEL rule.

number of SKUs becomes large. In sum, the curves of Figs.
and 4 suggest that obsolescence of inventory does not pose a Finally, we compare our model to the approach by Park and
serious obstacle to the application of the CEL rule. Lee [7], which represents an S/R system that is run applying

number of storage locationgV()

Finally, we investigate the relationship between the gfera
time imbalance and the numbér of SKUs for the scenario
with 600 storage locations. The characteristic curve in Eig
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V. CONCLUSION AND FUTURE WORK

In this paper, we proposed Markov models for the system
throughput analysis of S/R systems executing single-camima
cycles under the CEL rule. We showed how the expected
cycle time and further KPIs and indices of S/R systems can
be calculated efficiently based on aggregate Markov models.
As a major finding we could demonstrate that in contrast to a
conjecture stated in the literature, inventory obsoleseésnot
a big issue when applying the CEL strategy. Comparing our
results with alternative approaches from the literatuseaés
that the latter may significantly underestimate the maximum
system throughput. Future research will be concerned with
extending the models to dual-command cycles and consglerin

TABLE ILI. EXPECTED CYCLE TIMES OFPARK AND LEE’'S MODEL
Model | PL(1) PL@E) PL(5) PL(10) PL(15)
t 31.72 46.56 51.69 56.50 58.07
0.07 A
o)
<
-~ 0.06 A
N
o
P
£  0.05
Qo
©
Qo
o
& 0.04 4
73
& — — — Park, Lee
g 0.03 —— Markov model
©
[}
N
TEvs 0.02 -
2 [1]
0.01 A
T T T T T [2]
10 20 30 40 50
storage locationrf) [3]
Fig. 5. Comparison of access probabilities
[4]

the COL rule to the storage requests. For the purpose of
comparison, we calculate the mean storage tlieyielded (5]
by (13) of our model for each SKW. Subsequently, we insert

the values oflV, as parameters into the model of Park and [6]
Lee and compute the storage and retrieval access probesbilit
according to their formulas. The resulting expected cyiches

t are displayed in Table I, where PL) stands for the model 7]
of Park and Lee withl, SKUs.

The results show that the model by Park and Lee doe
not underestimate the maximum system throughput as muc
as the UD model, but the resulting expected cycle times are
still significantly higher than those of our Markov model.rFo
the instance withL. = 15, a closer look to the normalized [9]
storage access probabiliti¢s; (n)/ag of the first 50 storage
locations in Fig. 5 reveals that in our model, the chances of
favorable storage locations being assigned to a storageseq 10]
are significantly higher than those of the Park and Lee mode[.

It came as a surprise to us that the probabilities computed
by the approach of Park and Lee only slightly deviate from
the uniform distribution. This seems to indicate that their[11]
assumptions, especially with respect to i.i.d. storageegim

do not comply with a storage and retrieval strategy miningzi

the expected cycle time. As it is shown by (16d), the expecteélz]
storage timew,, of a loading unit is a quadratic function in

the location indexn, which clearly contradicts the premise of [13]
identically distributed storage times.

8]
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batch arrivals of the storage and retrieval requests.
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