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Problem statement Reformulation

Resource leveling problems in project management

Project consists of activities i ∈ V with durations pi
Minimum time lags δij between start times Si, Sj of activities i, j
Project must be completed within deadline d

Activities i require rik units of renewable resources k ∈ R
Sought: feasible schedule S = (Si)i∈V minimizing leveling function

f(S) =
∑

k∈R ck
∫ d

0
ϕ(rk(S, t)) dt

with rk(S, t) =
∑

i∈V :Si≤t<Si+pi
rik and convex function ϕ

(RLP)







Min. f(S)

s. t. Sj ≥ Si + δij ((i, j) ∈ E)

Si + pi ≤ d (i ∈ V )

Si ≥ 0 (i ∈ V )
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Problem statement Reformulation

Example
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Problem statement Reformulation

Example
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Problem statement Reformulation

Reformulation of the problem

Associate each antichain A ∈ A of precedence order
Θ(D) = {(i, j) | pi · pj > 0, dij ≥ pi} with duration variable xA

Encode schedule as a sequence of antichains A with positive
durations xA > 0 and resource requirements rAk =

∑

i∈A rik

(RLP ′)







Min. g(x)

s. t.
∑

A∈A:i∈A
xA = pi (i ∈ V )

∑

A∈A
xA = d

xA ≥ 0 (A ∈ A)

side constraints

Side constraints: feasibility of single-machine problem 1|temp|−
with set of jobs J = {A ∈ A | xA > 0}
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Problem statement Reformulation

Resource leveling objective functions

General leveling function

f(S) =
∑

k∈R

ck

∫ d

0

ϕ(rk(S, t)) dt → g(x) =
∑

A∈A

(
∑

k∈R

ckϕ(rAk)

)

︸ ︷︷ ︸

=:cA

xA

is linear function in duration variables xA

Total overload cost

ϕ(rk(S, t)) = [rk(S, t)− rk]
+ → cA =

∑

k∈R

ck[rAk − rk]
+

Total squared utilization cost

ϕ(rk(S, t)) = r
2
k(S, t) → cA =

∑

k∈R

ckr
2
Ak
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Problem statement Reformulation

Example revisited for total squared utilization cost
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Antichain A xA r2
Ak

· xA

{1, 2} 3 52 · 3 = 75
{1, 2, 4} 1 72 · 1 = 49
{2, 3, 4} 3 62 · 3 = 108
{3, 4} 4 32 · 4 = 36
{3} 1 12 · 1 = 1
{3, 5} 2 52 · 2 = 50
{5} 2 42 · 2 = 32

Σ d = 16 g(x) = 351
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Basic principle Optimality condition Pricing problem

Linear relaxation and column generation principle

Relaxation of side constraints in (RLP ′) yields linear program with
huge number of decision variables xA (A ∈ A)

(LP )







Min.
∑

A∈A
= cA · xA

s. t.
∑

A∈A:i∈A
xA = pi (i ∈ V ) ui

∑

A∈A
xA = d v

xA ≥ 0 (A ∈ A)

Solve (LP ) by column generation

Compute some initial basic solution
In each iteration determine nonbasic variable with negative reduced
cost by solving an appropriate pricing problem and perform a pivot
Terminate procedure when all reduced costs are nonnegative
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Basic principle Optimality condition Pricing problem

Reduced costs and optimality condition

Dual of (LP )

(D)







Max.
∑

i∈V
pi · ui + d · v

s. t.
∑

i∈A
ui + v ≤ cA (A ∈ A)

Hence reduced costs are

ζA = cA −
∑

i∈A ui − v (A ∈ A)

Let B be basic matrix to current basic solution x; then simplex
multipliers u, v computed as

(

u

v

)

= (B⊤)−1

(

cB

0

)

Sufficient optimality condition: minA∈A ζA ≥ 0
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Basic principle Optimality condition Pricing problem

Pricing problem

Determine (nonbasic) index A∗ with ζA∗ = minA∈A ζA

Introduce binary variable yi with yi = 1A∗(i) and define
rk(y) :=

∑

i∈V rikyi

Pricing problem: ICP

(PP (u, v))







Min. ζA =
∑

k∈R

ck · ϕ(rk(y))

︸ ︷︷ ︸

=cA

−
∑

i∈V
uiyi − v

s. t. yi + yj ≤ 1 ((i, j) ∈ Θ(D))

yi ∈ {0, 1} (i ∈ V )

(PP (u, v)) represents concave stable set problem on perfect graph
(comparability graph of Θ(D))
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Preprocessing

1 Replace positive completion-to-start-time lags δij − pi > 0 by
dummy activities with durations δij − pi > 0

2 Identify unavoidable antichains A, which must be in execution in
any feasible schedule, i. e., xA > 0 for all feasible x

Proposition

Let ∅ 6= A ⊆ V . Then all activities i ∈ A are processed in parallel during

at least p(A) = max{0,mini,j∈A(dij + pj)} time units. The bound is

tight, i. e., there always exists a feasible schedule with xA = p(A).

Due to p(A) = mini∈A p(A \ {i}) the antichains A with p(A) > 0
can be computed recursively as cliques of the graph G = (V,E′)
with edge set E′ = {{i, j} | p({i, j}) > 0}
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Experimental performance analysis

Testsets j10, j20, j30 with 270 instances each (Kolisch et al. 1999)

Variation of deadline factor: DF ∈ {1.0, 1.1, 1.5}

Lower bounds compared to optimum values published by Rieck et
al. (2012) and Kreter et al. (2014)

Tested versions of column generation

CG1: without preprocessing
CG2: completion-to-start dummy activities
CG3: identification of unavoidable antichains
CG4: combination of CG2 and CG3

Preprocessing implemented in C#, column generation implemented
under GAMS 24.0 invoking Gurobi 5.0 as MIQP-Solver

Numbers of activities after preprocessing 10 – 126
Mean numbers of pivots during column generation 11 – 1221
Mean CPU times in seconds 4 – 715
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Experimental performance analysis

Mean relative deviations from optimum objective function values

Total squared utilization cost

j10 j20 j30

DF 1.0 1.1 1.5 1.0 1.1 1.5 1.0 1.1

CG1 7.78% 6.06% 1.86% 8.85% 5.43% 1.85% 9.64% 5.79%
CG2 4.43% 5.23% 1.83% 5.51% 4.73% 1.83% 6.16% 4.91%
CG3 2.66% 4.42% 1.01% 3.38% 4.20% 0.79% 4.75% 5.15%
CG4 1.93% 3.96% 0.99% 2.49% 3.67% 0.78% 3.27% 4.30%

Total overload cost

j10 j20 j30

DF 1.0 1.1 1.5 1.0 1.1 1.5 1.0 1.1

CG4 2.06% 4.12% 0.66% 2.95% 3.47% 0.43% 3.58% 4.66%
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Summary

Reformulation of resource leveling problems based on antichain
durations

Relaxing sequencing side constraints yields large-scale linear program

Linear program solvable via column generation

Pricing problem represents concave stable set problem on perfect
graph

Relaxation strengthened by preprocessing techniques

Mean relative deviations < 5% for all scenarios

Future research

Investigation of the complexity status of the pricing problem

Branch-and-bound algorithm for resource leveling problems based
on antichain formulation
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