

Large-Scale Short-Term Planning in Chemical Batch Production

N. Trautmann, University of Bern

Ch. Schwindt, Clausthal University of Technology

supported by German Research Foundation DFG (Grant Schw1178/1)

<u>Outline</u>

- 1. Short-term planning problem
- 2. Overview of cyclic approach
- 3. Cyclic batching
- 4. Cyclic batch scheduling and concatenation
- 5. Performance analysis
- 6. Conclusions

Short-term planning problem

Determine

- batch size, input/output proportions, and number of executions for each task (operations)
- assignment of operations to processing units
- start times of operations

such that

- given primary requirements for final products are satisfied
- prescribed intervals for batch sizes and input/output proportions are observed
- no processing unit processes more than one operation at a time
- processing units are cleaned between consecutive operations
- sufficient amount of each input product is available at the start of each operation
- sufficient storage space for output products is available at the completion of each operation
- all perishable products are consumed immediately after production
- makespan is minimized

Related literature

Surveys on short-term planning in the process industries

- Kallrath J (2002) Planning and scheduling in the process industry. OR Spectrum 24:219–250
- Burkard RE, Hatzl J (2006) Review, extensions and computational comparison of MILP formulations for scheduling of batch processes. Computers and Chemical Engineering 29:1752–1769

Short-term planning of batch plants: Monolithic approaches

- Kondili E, Pantelides CC, Sargent RWH (1993) A general algorithm for short-term scheduling of batch operations: 1. MILP Formulation. Computers and Chemical Engineering 17:211–227
- lerapetritou MG, Floudas CA (1998) Effective continuous-time formulation for short-term scheduling: 1. Multipurpose batch processes. Industrial & Engineering Chemistry Research 37:4341–4359
- Blömer F, Günther H-O (2000) LP-based heuristics for scheduling chemical batch process. International Journal of Production Research 38:1029–1051

Short-term planning of batch plants: Decomposition approaches

- Brucker P, Hurink J (2000) Solving a chemical batch scheduling problem by local search. Annals of Operations Research 96:17–36
- Neumann K, Schwindt C, Trautmann N (2002) Advanced production scheduling for batch plants in process industries. OR Spectrum 24:251–279
- Schwindt C, Trautmann N (2004) A priority-rule based method for batch production scheduling in the process industries. In: Ahr D, Fahrion R, Oswald M, Reinelt G (eds) Operations Research Proceedings 2003. Springer, Berlin, pp. 111–118
- Gentner K, Neumann K, Schwindt C, Trautmann N (2004) Batch production scheduling in the process industries. In: Leung JYT (ed) Handbook of Scheduling: Algorithms, Models and Performance Analysis. CRC Press, Boca Raton, pp. 48.1–48.21

	Short-term pla	nning in batch production	3. Cyclic batching									
3 Cyclic batching Mixed-integer nonlinear program												
	Minimize	$\xi \sum_{\tau \in \mathcal{T}} p_{\tau} \varepsilon_{\tau}$										
	subject to	$\underline{\alpha}_{\tau\pi} \leq \alpha_{\tau\pi} \leq \overline{\alpha}_{\tau\pi}$ $\underline{\beta}_{\tau} \leq \beta_{\tau} \leq \overline{\beta}_{\tau}$ $\sum_{\tau} \alpha_{\tau\pi} = -\sum_{\tau} \alpha_{\tau\pi}$	$(\tau \in \mathcal{T}, \ \pi \in \mathcal{P}_{\tau}^{-} \cup \mathcal{P}_{\tau}^{+})$ $(\tau \in \mathcal{T})$ $= 1 \qquad (\tau \in \mathcal{T})$	(1) (2) (3)								
	Į	$\sum_{\tau \in \mathcal{T}_{\pi}^{-} \cup \mathcal{T}_{\pi}^{+}}^{\pi \in \mathcal{P}_{\tau}} \alpha_{\tau \pi} \beta_{\tau} \varepsilon_{\tau} = 0$	$(\pi\in \mathcal{P}^i)$	(4)								
		$\xi \sum_{\tau \in \mathcal{T}_{\tau}^{-} \sqcup \mathcal{T}_{\tau}^{+}} \alpha_{\tau \pi} \beta_{\tau} \varepsilon_{\tau} \ge \rho_{\pi}$	$(\pi \in \mathcal{P} \setminus \mathcal{P}^i)$	(5)								
		$\alpha_{\tau\pi}\beta_{\tau} = -\alpha_{\tau'\pi}\beta_{\tau'}$ $\sum_{\tau\in\mathcal{T}}\varepsilon_{\tau} \leq \overline{\varepsilon}$	$(\pi \in \mathcal{P}^p, \ \tau \in \mathcal{T}^+_{\pi}, \ \tau' \in \mathcal{T}^{\pi})$	(6) (7)								
		$\varepsilon_{\tau} \in \mathbb{Z}_{\geq 0}$ $\xi \in \mathbb{Z}_{\geq 0}$	$(\tau \in \mathcal{T})$	(8) (9)								

 $u^{\scriptscriptstyle b}$

UNIVERSITĂ

4 Cyclic batch scheduling and concatenation

- Determine feasible subschedule $S' = (S_1, \ldots, S_n)$ for the $n = \sum_{\tau \in \mathcal{T}} \varepsilon_{\tau}$ operations of one cycle with appropriate scheduling method
- \bullet Subschedule S^\prime induces precedence relationships
 - \triangleright between operations i, j being processed on the same unit: $i \leq j$ if $S_j \geq S_i + p_i + c_{ij}$

 \triangleright between operations *i* producing and operations *j* consuming the same product:

```
i \preceq j if S_j \ge S_i + p_i
```

 \triangleright between operations i consuming and operations j producing the same product: $i \preceq j$ if $S_j \geq S_i - p_j$

• Precedence relationships preserve schedule feasibility when moving operations

- \bullet Iteratively concatenate ξ "flexible" copies of subschedule S'
- \bullet Schedule S for first μ cycles defines release dates r_j for operations j of cycle $\mu+1$
 - \triangleright last operation i on unit in cycle μ and first operation j one that unit in cycle $\mu+1$: $r_j=S_i+p_i+c_{ij}$
 - ▷ last operation *i* producing intermediate in cycle μ and operations *j* consuming that intermediate in cycle μ + 1: $r_j = S_i + p_i$
 - \triangleright last operation i consuming intermediate in cycle μ and operations j producing that intermediate in cycle $\mu + 1$: $r_j = S_i p_j$
- Translate precedence relationships and release dates into prescribed minimum and maximum time lags between operations
- Temporal scheduling problem
 - > Minimize makespan subject to minimum and maximum time lags
 - \triangleright Can be solved efficiently by finding longest path lengths in operation-on-node network

- Decomposition method proposed by Gentner et al. (2004)
- Results reported by Gentner (2005); PC: 1.4 GHz Pentium IV CPU, 1 GB RAM

Computational results

	Gentner (2005)		This paper			Gentner (2005)		This paper			
Instance	C_{\max}	t_{cpu}	# op.'s	C_{\max}	t_{cpu}	Instance	C_{\max}	t_{cpu}	# op.'s	C_{\max}	t_{cpu}
WeKa0_0	178	18	88	128	116	WeKa20_7	1294	215	712	1020	95
WeKa0_1	352	38	176	252	113	WeKa20_8	1547	200	801	1146	96
WeKa0_2	474	53	264	376	118	WeKa20_9	1816	327	890	1272	94
WeKa0_3	612	120	352	500	119	WeKa20_10	1920	448	979	1398	94
WeKa0_4	738	209	440	624	115	WeKa20_15	2386	421	1424	2028	96
WeKa0_5	906	178	528	748	122	WeKa20_20	3604	969	1869	2658	96
WeKa0_6	1046	215	616	872	119	WeKa20_30	5194	3255	2759	3918	75
WeKa0_7	1199	323	704	996	121	WeKa21_0	210	17	98	144	103
WeKa0_8	1334	281	792	1120	117	WeKa21_1	382	127	196	284	100
WeKa0_9	1548	399	880	1244	128	WeKa21_2	555	67	294	424	95
WeKa0_10	1740	431	968	1368	100	WeKa21_3	728	97	392	564	91
WeKa0_15	2123	644	1408	1988	97	WeKa21_4	868	152	490	704	86
WeKa0_20	2899	1500	1848	2608	97	WeKa21_5	1082	226	588	844	86
WeKa0_30	4416	5235	2728	3884	77	WeKa21_6	1224	250	686	984	83
WeKa19_0	238	19	105	166	80	WeKa21_7	1420	240	784	1124	82
WeKa19_1	436	165	210	316	81	WeKa21_8	1554	291	882	1264	85
WeKa19_2	618	59	315	466	79	WeKa21_9	1701	475	980	1404	85
WeKa19_3	818	97	420	616	80	WeKa21_10	1916	469	1078	1544	82
WeKa19_4	1004	179	525	766	81	WeKa21_15	2545	771	1568	2244	81
WeKa19_5	1184	232	630	916	80	WeKa21_20	3398	1415	2058	2944	82
WeKa19_6	1384	330	735	1066	83	WeKa21_30	5091	5957	3038	4344	89
WeKa19_7	1570	474	840	1216	81	WeKa22_0	190	192	102	152	327
WeKa19_8	1806	442	945	1366	81	WeKa22_1	376	85	204	290	644
WeKa19_9	1946	568	1050	1516	80	WeKa22_2	558	102	306	428	298
WeKa19_10	2135	570	1155	1666	83	WeKa22_3	722	120	408	566	155
WeKa19_15	2848	1322	1680	2416	79	WeKa22_4	930	249	510	704	239
WeKa19_20	3811	1911	2205	3166	78	WeKa22_5	1024	239	612	842	324
WeKa19_30	5896	6610	3255	4666	76	WeKa22_6	1298	255	714	980	270
WeKa20_0	168	34	89	138	86	WeKa22_7	1488	341	816	1118	150
WeKa20_1	336	50	178	264	87	WeKa22_8	1520	439	918	1256	276
WeKa20_2	590	72	267	390	90	WeKa22_9	1779	427	1020	1394	149
WeKa20_3	750	76	356	516	100	WeKa22_10	1786	647	1122	1532	221
WeKa20_4	896	93	445	642	98	WeKa22_15	2586	704	1632	2222	171
WeKa20_5	990	126	534	768	100	WeKa22_20	3172	1598	2142	2912	206
WeKa20_6	1138	184	623	894	95	WeKa22_30	5375	7563	3162	4292	271

6 Conclusions

Summary

- Short-term planning of batch production in the process industries
- New heuristic solution method for large-scale problem instances
 - \triangleright Cyclic batching
 - ▷ Cyclic batch scheduling
 - \triangleright Concatenation

Further research

- Expansion to continuous production mode
 - ▷ Production rates and processing times subject to optimization
- Coping with uncertainty: processing times, yields
 - ▷ Reactive scheduling methods for schedule revision and rescheduling