Temporal Scheduling of Projects with Time-Overlap Trade-Offs

Christoph Schwindt

Philipp Benke

Clausthal University of Technology

New Perspectives in Scheduling Theory Hangzhou, October 9–13, 2011

Clausthal University of Technology

Christoph Schwindt

Outline

1 Problem definition

- Concurrent engineering projects
- Temporal constraints
- Temporal scheduling problems

2 Structural issues

- 3 Temporal scheduling methods
 - Earliest completion times
 - Latest completion times

4 Performance analysis

5 Conclusions

Christoph Schwindt

Outline

1 Problem definition

- Concurrent engineering projects
- Temporal constraints
- Temporal scheduling problems

2 Structural issues

3 Temporal scheduling methods

- Earliest completion times
- Latest completion times

Performance analysis

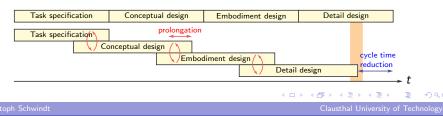
5 Conclusions

A (10) > A (10) > A

Concurrent engineering projects

Concurrent engineering approach

- Industrial development projects organized in consecutive phases
- In high-tech sectors ability to place new products within tight market entry time windows constitutes decisive success factor
- Concurrent engineering approach: parallelize consecutive development phases to shorten cycle time of development project
- Additional integration and coordination efforts due to feedback loops between phases: trade-off between overlappings and durations (time-overlap trade-off)



Concurrent engineering projects

Overlap times and activity durations

- Development project consists of *n* activities *i* ∈ *V* (phases, working packages, milestones, project beginning, project end)
- Precedence relationships (i, j) ∈ E between activities, maximum project duration d
- Overlapping of activities i, j with $(i, j) \in E$ during time

 $\ell_{ij} = C_i - S_j$

leads to increasing duration of activity j

 $p_j = p_j(\ell_j)$ with $\ell_j = (\ell_{ij})_{(i,j)\in E}$

• Overlap times ℓ_{ij} bounded by $\overline{\ell}_{ij}$

Christoph Schwindt

Projects with Time-Overlap Trade-Offs

э

Clausthal University of Technology

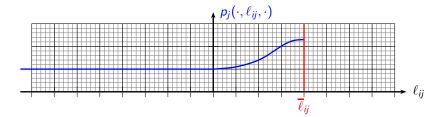
(a)

Concurrent engineering projects

Properties of duration functions $p_j(\ell_j)$

- *p_j* componentwise differentiable
- *p_j* componentwise constant when overlapping is avoided,
 p_i componentwise nondecreasing when overlapping is realized

$$\frac{\partial p_{j}}{\partial \ell_{ij}}(\ell_{ij}) = 0 \text{ for } \ell_{ij} < 0, \quad \frac{\partial p_{j}}{\partial \ell_{ij}}(\ell_{ij}) \geq 0 \text{ for } \ell_{ij} \in [0, \overline{\ell}_{ij}]$$



Clausthal University of Technology

▲ @ ▶ ▲ ≥ ▶ ▲

Christoph Schwindt

Temporal constraints

Maximum start-to-end time lags

- Negative overlap time l_{ij} means that j is started -l_{ij} time units after completion of j
- Maximum overlap time *l*_{ij} induces maximum start-to-end time lag between activity *j* and activity *i*

$$\ell_{ij} = C_i - S_j \leq \overline{\ell}_{ij} \quad \Leftrightarrow \quad C_i \leq S_j + \overline{\ell}_{ij}$$

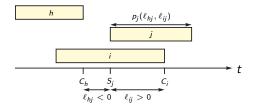


Image: A math a math

Christoph Schwindt

Projects with Time-Overlap Trade-Offs

э

Temporal constraints

Semantic power: How to model ...

 project deadline: maximum start-to-end time lag between project beginning j = 0 and project end i = n + 1

$$C_{n+1} \leq S_0 + \overline{d} \quad \Leftrightarrow \quad \overline{\ell}_{(n+1)0} = \overline{d}$$

• ordinary precedence constraint between *i* and *j*

$$S_j \geq C_i \quad \Leftrightarrow \quad \overline{\ell}_{ij} = 0$$

• minimum end-to-start time lag $d_{ij}^{min} > 0$ between i and j

$$S_j \geq C_i + d_{ij}^{min} \hspace{0.1in} \Leftrightarrow \hspace{0.1in} \overline{\ell}_{ij} = -d_{ij}^{min}$$

Semantic limitations

 Due to overlap-dependent activity durations only modeling of maximum start-to-end and minimum end-to-start relationships

э

Clausthal University of Technology

イロト イポト イヨト イヨト

Temporal scheduling problems

Earliest and latest start and completion times

- Determine earliest and latest start and completion times ES_h, LS_h, EC_h, LC_h of activities $h \in V$
- Earliest/latest start time problem for activity h

$$(TSP_{h}^{S}) \left\{ \begin{array}{ll} \operatorname{Min./Max.} S_{h} \\ \text{subject to} \quad \ell_{ij} = S_{i} + p_{i}(\ell_{i}) - S_{j} \quad ((i, j) \in E) \\ \ell_{ij} \leq \overline{\ell}_{ij} \qquad ((i, j) \in E) \\ S_{0} = 0, \quad S_{j} \geq 0 \qquad (j \in V) \end{array} \right\} S_{T}$$

• Earliest/latest completion time problem for activity h

$$(TSP_{h}^{C}) \left\{ \begin{array}{l} \mathsf{Min./Max.} \ C_{h} \\ \mathsf{subject to} \ \ell_{ij} = C_{i} - [C_{j} - p_{j}(\ell_{j})] \ ((i,j) \in E) \\ \ell_{ij} \leq \overline{\ell}_{ij} \ ((i,j) \in E) \\ C_{0} = 0, \ C_{j} \geq p_{j}(\ell_{j}) \ (j \in V) \end{array} \right\} \ C_{T}$$

• • • • • • • • • • • •

Clausthal University of Technology

Outline

Problem definition

- Concurrent engineering projects
- Temporal constraints
- Temporal scheduling problems

2 Structural issues

- Temporal scheduling methods
 Earliest completion times
 - Latest completion times

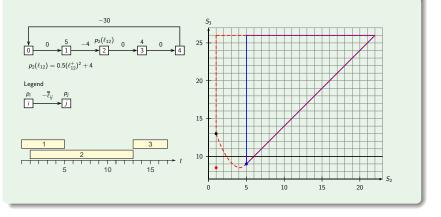
Performance analysis

5 Conclusions

Clausthal University of Technology

Christoph Schwindt

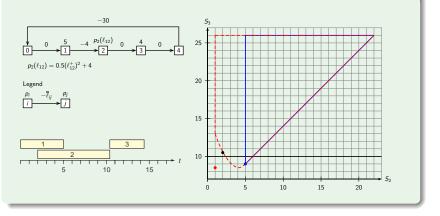
Earliest start schedule ES is not feasible



▲ロ → ▲圖 → ▲目 → ▲目 → ▲目 → ● ● ●

Christoph Schwindt

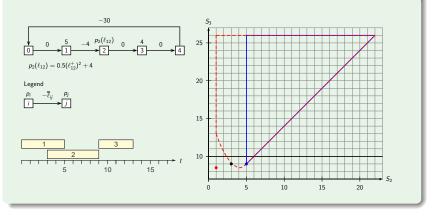
Earliest start schedule ES is not feasible



▲ロ → ▲圖 → ▲目 → ▲目 → ▲目 → ● ● ●

Christoph Schwindt

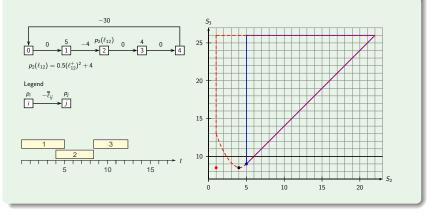
Earliest start schedule ES is not feasible



▲ロ → ▲圖 → ▲目 → ▲目 → ▲目 → ● ● ●

Christoph Schwindt

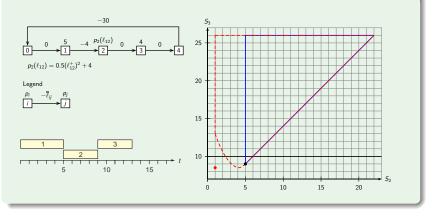
Earliest start schedule ES is not feasible



▲ロ → ▲圖 → ▲目 → ▲目 → ▲目 → ● ● ●

Christoph Schwindt

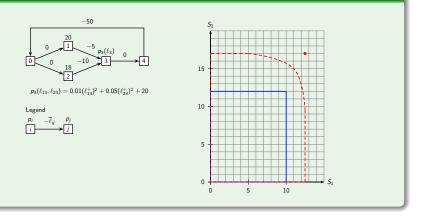
Earliest start schedule ES is not feasible



▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ▶ ④ ◎ ◎

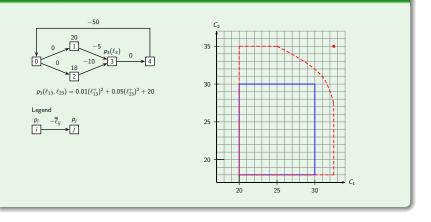
Christoph Schwindt

Latest start schedule LS is not feasible



Christoph Schwindt

Latest completion schedule *LC* is not feasible



Christoph Schwindt

Feasibility of earliest completion schedule

Proposition

- **Q** The earliest completion schedule $EC = (EC_j)_{j \in V}$ is feasible.
- Q Let l = l(EC) be the minimal vector of overlap times belonging to schedule EC. For each (i, j) ∈ E it holds that

$$\ell_{ij} = \min\{EC_i, \min_{(h,j)\in E}(\overline{\ell}_{hj} + EC_i - EC_h)\}$$
(1)

or ℓ_{ij} satisfies the following two optimality conditions:

$$\frac{d}{d\ell_{ij}}p_j((\ell_{ij} + EC_h - EC_i)_{(h,j)\in E}) = 1$$
(2)

$$\frac{d^2}{d\ell_{ij}^2} p_j((\ell_{ij} + EC_h - EC_i)_{(h,j)\in E}) \ge 0$$
(3)

▲ □ ► ▲ □ ► ▲

Clausthal University of Technology

windt

Example 1 (cont'd)

$$-30$$

$$p_{2}(\ell_{12}) = 0.5(\ell_{12}^{+})^{2} + 4$$

$$p_{2}(\ell_{12}) = 0.5(\ell_{12}^{+})^{2} + 4$$

• Equation (1):
$$\ell_{12} = \min\{EC_1, \overline{\ell}_{12}\} = \min\{5, 4\} = 4$$

• Equation (2):
$$\frac{d}{d\ell_{12}}p_2(\ell_{12}) = \ell_{12} = 1$$

• Equation (3):
$$\frac{d^2}{d\ell_{12}}p_2(\ell_{12})=1>0$$

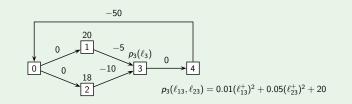
•
$$\ell_{12} = 4$$
: $p_2(\ell_{12}) = 12$, $C_2 = EC_1 - \ell_{12} + p_2(\ell_{12}) = 5 - 4 + 12 = 13$

•
$$\ell_{12} = 1$$
: $p_2(\ell_{12}) = 4.5$, $C_2 = EC_1 - \ell_{12} + p_2(\ell_{12}) = 5 - 1 + 4.5 = 8.5$
 $\Rightarrow EC_2 = 8.5$

Christoph Schwindt

<ロ> <@> < E> < E> = のへの

Example 2 (cont'd)



• Equation (1):

 $\ell_{13} = \min\{EC_1, \overline{\ell}_{13}, \overline{\ell}_{23} + EC_1 - EC_2\} = \min\{20, 5, 10 + 20 - 18\} = 5$

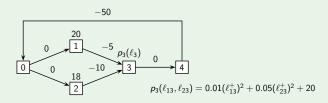
Christoph Schwindt

Projects with Time-Overlap Trade-Offs

э

イロン イロン イヨン イヨン

Example 2 (cont'd)



• Equation (2):

$$p_{3}(\ell_{13}) = 0.01\ell_{13}^{2} + 0.05(\ell_{13} + EC_{2} - EC_{1})^{2} + 20$$

= 0.06\ell_{13}^{2} - 0.2\ell_{13} + 20.2
$$\frac{d}{d\ell_{13}}p_{3}(\ell_{13}) = 0.12\ell_{13} - 0.2 = 1 \quad \Leftrightarrow \quad \ell_{13} = 10$$

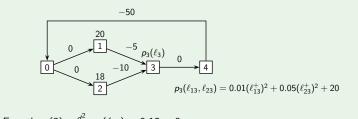
Clausthal University of Technology

3

<ロ> (日) (日) (日) (日) (日)

Christoph Schwindt

Example 2 (cont'd)



• Equation (3):
$$\frac{d}{d\ell_{13}}p_3(\ell_{13}) = 0.12 > 0$$

- $\ell_{13} = 5$: $p_3(\ell_{13}) = 20.7$, $C_3 = EC_1 \ell_{13} + p_3(\ell_{13}) = 20 5 + 20.7 = 35.7$
- $\ell_{13} = 10$: $p_3(\ell_{13}) = 24.2$, $C_3 = EC_1 \ell_{13} + p_3(\ell_{13}) = 20 10 + 24.2 = 34.2$ $\Rightarrow EC_3 = 34.2$

Christoph Schwindt

Projects with Time-Overlap Trade-Offs

3

イロト イポト イヨト イヨト

Overview of structural issues

Gen	eral duration	functions p	$_i(\ell_i)$
Start	times	Completi	on times
$ES \notin S_T$	LS ∉ S _T	$EC \in C_T$	$LC \notin C_T$
S_T not	convex	C_T not	convex
$[ES_i, LS_i]$ r	not feasible	$[EC_i, LC_i]$] feasible

Con	vex duration	functions p	$i(\ell_i)$	
Start	times	Completion times		
$ES \notin S_T$	$LS \notin S_T$	$EC \in C_T$	$LC \notin C_T$	
S_T c	onvex	C_T co	onvex	
$[ES_i, LS_i]$] feasible	$[EC_i, LC_i]$ feasible		

Const	tant duration	ns functions	$p_i(\ell_i)$		
Start	Start times		Completion times		
$ES \in S_T$	$LS \in S_T$	$EC \in C_T$	$LC \in C_T$		
S_T c	onvex	C_T co	onvex		
$[ES_i, LS_i]$] feasible	$[EC_i, LC_i]$ feasible			

Christoph Schwindt

Projects with Time-Overlap Trade-Offs

2

・ロト ・回ト ・ヨト ・ヨト

Earliest completion times Latest completion times

Outline

Problem definition

- Concurrent engineering projects
- Temporal constraints
- Temporal scheduling problems

2 Structural issues

- 3 Temporal scheduling methods
 - Earliest completion times
 - Latest completion times

Performance analysis

5 Conclusions

Christoph Schwindt

Earliest completion times Latest completion times

Temporal scheduling methods

Overview

- Earliest completion times
 - EC can be computed with efficient label-correcting algorithm

Latest completion times

- LC_j has to be calculated separately for each activity j
- Since interval [EC_j, LC_j] does only contain feasible completion times C_j: perform binary search on interval [EC_j, d]
- For each C_j check whether or not C_j is feasible using modified label-correcting algorithm
- Earliest and latest start times
 - ES_j : Determine maximum $\ell_{ij} \leq \min_{(h,j)\in E}(\overline{\ell}_{hj} + EC_i EC_h)$ such that $C_j = EC_i - \ell_{ij} + p_j((\ell_{ij} + EC_h - EC_i)_{(h,j)\in E}) \leq LC_j$
 - LS_j: Introduce dummy activity i with p_i = 0 and l
 _{ij} = 0, LS_j coincides with LC_i

э

Clausthal University of Technology

イロト イポト イヨト イヨト

Earliest completion times Latest completion times

Earliest completion schedule

Label-correcting algorithm

```
for all i \in V \setminus \{0\} do put C_i := -\infty;
put C_0 := 0, Q := \{0\}; (* Q is a queue *)
while Q \neq \emptyset do
   pop i off queue Q;
   for all (i, j) \in E do
      calculate \ell_i^* using equations (1)–(3);
      if C_j < C_i - \ell_{ii}^* + p_j(\ell_i^*) then
         update C_i := C_i - \ell_{ii}^* + p_i(\ell_i^*);
         if C_i > \overline{\ell}_{n+1,0} then terminate; (*C_T = \emptyset *)
         if i \notin Q then push j into queue Q;
      end if
   end for
end while
return C:
```

Christoph Schwindt

Projects with Time-Overlap Trade-Offs

э

Clausthal University of Technology

(a)

Check feasibility of completion time

Modified label-correcting algorithm checking feasibility of C_h

```
for all i \in V \setminus \{h\} do put C_i := -\infty;
put Q := \{i\}; (* Q is a queue *)
while Q \neq \emptyset do
   pop i off queue Q;
   for all (i, j) do
      calculate \ell_i^*;
      if C_j < C_i - \ell_{ii}^* + p_j(\ell_i^*) then
        if j = h then return false; (* C_h is not feasible *)
         C_i := C_i - \ell_{ii}^* + p_i(\ell_i^*);
         if i \notin Q then push i into queue Q;
      end if
  end for
end while
return true; (* C_h is feasible *)
```

Christoph Schwindt

Projects with Time-Overlap Trade-Offs

э

Clausthal University of Technology

<ロ> (日) (日) (日) (日) (日)

Outline

Problem definition

- Concurrent engineering projects
- Temporal constraints
- Temporal scheduling problems

2 Structural issues

- Temporal scheduling methods
 Earliest completion times
 - Latest completion times

4 Performance analysis

5 Conclusions

Christoph Schwind

Performance analysis

Test bed

- Temporal scheduling methods implemented under MS Visual C++ 6.0 Developer Studio
- Intel Pentium 1.7 GHz PC with 524 MB RAM running under Windows 2000 professional
- Full factorial design experiment with 2,160 instances

Symbol	Parameter	Values
р	number of (sub-)projects	2, 5, 10
n	number of real activities per project	10, 20, 50
OS	order strength	0.25, 0.5

• Duration functions: nonconvex 3rd-order polynomials

・ロン ・四 と ・ ヨ と ・ ヨ と

Clausthal University of Technology

Performance analysis

Impact of number o	f projects	on CPU	times [ms]	
		<i>p</i> = 2	<i>p</i> = 5	<i>p</i> = 10
	CPU _{EC}	0.5	2.3	3.0
	CPU_{LC}	824.3	5,572.8	9,729.0

Impact of number	of activities per	project	on CPU	times [r
	n =	10 r	n = 20	n = 50

	-	-	
CPU _{EC}	0.4	0.9	4.4
CPULC	266.6	1,462.3	14,397.2

Impact of order strength on CPU times [ms]			
		<i>OS</i> = 0.25	<i>OS</i> = 0.5
	CPU _{EC}	1.6	2.2
	CPU_{LC}	3,604.2	7,146.5

・ロト・西ト・ヨト・ヨー うらく

Christoph Schwindt

Clausthal University of Technology

Outline

Problem definition

- Concurrent engineering projects
- Temporal constraints
- Temporal scheduling problems

2 Structural issues

- Temporal scheduling methods
 Earliest completion times
 - Latest completion times

Performance analysis

5 Conclusions

Clausthal University of Technology

Christoph Schwindt

Conclusions

Summary

- Concurrent engineering projects
- Trade-off between overlap times and activity durations
- Earliest completion schedule is feasible, remaining extremal schedules are not feasible
- Algorithms perform reasonably well for project portfolios with up to 500 activities

Expansions

- Priority-rule based method for resource-constrained variant of the problem
- Objective function: earliness-tardiness cost with respect to due date
- Sequential version: mean CPU time less than one second

э

(a)