Scheduling Continuous Material Flows

Ch. Schwindt, University of Karlsruhe

Outline

- 1. Problem
- 2. Model
- 3. Solution Method
- 4. Implementationary Issues
- 5. Conclusions

2 Model

• Notations

- $\triangleright \mathcal{O}$: Set of operations $i = 1, \ldots, n$ with processing time p_i
- $\triangleright \mathcal{C}$: Set of cumulative resources k with safety stock \underline{R}_k and capacity \overline{R}_k
- $\triangleright r_{ik}$: Increase in inventory level of k after completion of i
- $\triangleright \delta_{ij}$: Time lag between linked operations $(i, j) \in E$
- $\triangleright S = (S_1, \ldots, S_n)$: Production schedule

 $\triangleright x_i(S,t)$: Portion of operation $i \in \mathcal{O}$ processed by time t

 $\triangleright r_k(S,t) = \sum_{i \in \mathcal{O}} r_{ik} x_i(S,t)$: Inventory in resource $k \in \mathcal{C}$ at time t

$$\triangleright f : \mathbb{R}^n_{\geq 0} \to \mathbb{R}$$
: Convex objective function in start times $S_i \ (i \in \mathcal{O})$

• Model $\begin{cases} \text{Minimize} \quad f(S) \\ \text{subject to} \quad \underline{R}_k \leq r_k(S,t) \leq \overline{R}_k \quad (k \in \mathcal{C}, \ t \geq 0) \\ S_j - S_i \geq \delta_{ij} \quad ((i,j) \in E) \\ S_i \geq 0 \quad (i \in \mathcal{O}) \end{cases} \end{cases}$

3 Solution Method

- Scheduling is ...
 - > defining precedence relationships between operations competing for scarce resources (Sequencing: hard)
 - ▷ optimizing objective function subject to prescribed time lags and established precedence relationships (Temporal scheduling: tractable)
- Solution method

IO R	Scheduling Continuous Material Flows	3. Solution Method: Settling Inventory Shortage	6/11		
Settling inventory shortage at time t					
▷ Select operations settling the shortage					
⊳	<i>Optimize simultaneous displacement</i>	ts under resource constraints			
٠	Partition $\mathcal{O}_k := \{j \in \mathcal{O} \mid r_{jk} \neq 0\}$ interval	o two sets A and B			

• Set A

▷ Operations $j \in \mathcal{O}_k^- := \{j \in \mathcal{O}_k \mid r_{jk} < 0\}$ have to be completed by deadline t▷ Operations $j \in \mathcal{O}_k^+ := \{j \in \mathcal{O}_k \mid r_{jk} > 0\}$ are released at ready time t

$$\left.\begin{array}{l}
S_j + p_j \leq t \quad (j \in A \cap \mathcal{O}_k^-) \\
S_j \geq t \quad (j \in A \cap \mathcal{O}_k^+)
\end{array}\right\}$$
(1)

• Inventory shortage at time t caused by operations $j \in A$: $\underline{R}_k - \sum_{j \in A \cap \mathcal{O}_k^-} r_{jk}$

WIOR	Scheduling Continuous Material Flows	3. Solution Method: Settling Inventory Shortage	7/11		
• Set B					
\triangleright Operations $j \in \mathcal{O}_k^-$ cannot be completed before time t					
	\triangleright Operations $j \in \mathcal{O}_k^+$ must not be started after time t				
\triangleright Schedule operations $j \in B$ such that net production not less than shortage by A:					

$$\sum_{j \in B} r_{jk} x_j(S, t) \ge \underline{R}_k - \sum_{j \in A \cap \mathcal{O}_k^-} r_{jk}$$

 \triangleright Introduce decision variables x_j :

$$0 \le x_j \le 1 \quad (j \in B) \tag{2}$$

$$\sum_{j \in B} r_{jk} x_j \ge \underline{R}_k - \sum_{j \in A \cap \mathcal{O}_k^-} r_{jk}$$
(3)

$$\left.\begin{array}{l}
S_j + p_j x_j \ge t \quad (j \in B \cap \mathcal{O}_k^-) \\
S_j + p_j x_j \le t \quad (j \in B \cap \mathcal{O}_k^+)
\end{array}\right\}$$
(4)

• Finiteness of solution method

 \triangleright Constraints (1) to (4) definitively settle inventory shortage at time t

▷ There exists $i \in \mathcal{O}_k^+$ with $r_k(S, S_i) < \underline{R}_k$ or $i \in \mathcal{O}_k^-$ with $r_k(S, S_i + p_i) < \underline{R}_k$

 \triangleright Constant t in inequalities (1) and (4) can be replaced with decision variable S_i (+ p_i)

 \triangleright All shortages settled after *n* iterations

• Case of inventory excess

▷ Interchange sets \mathcal{O}_k^- and \mathcal{O}_k^+ in inequalities (1) and (4) ▷ Replace (3) with

$$\sum_{j \in B} r_{jk} x_j \le \overline{R}_k - \sum_{j \in A \cap \mathcal{O}_k^+} r_{jk} \tag{3'}$$

 \triangleright Feasible schedule after 2n iterations

WIO R	Scheduling Continuous Material Flows	5. Conclusions: Summary and Future Research	11/11
5	Conclusions		
•	Storage problems in process scheduling	r S	

- ▷ Storage capacity settings
- ▷ Storage homogeneity settings
- \triangleright Storage time settings
- Scheduling continuous material flows
 - ▷ Disregard resource constraints
 - \triangleright Settle conflicts by partitioning sets of operations
 - \triangleright For given partition, replace resource constraint by linear inequality
- Future Research
 - \triangleright Development of efficient heuristics based on concepts presented
 - \triangleright Integration of further constraints like setup times or calendars