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1 Problem definition

• V = {0, 1, . . . , n, n + 1}: Set of events

• δij ∈ Z: Minimum time lag between i and j

(if < 0, maximum time lag between j and i)

• cf
i ∈ Z: Cash flow associated with i

• 0 < β < 1: Discount rate − ln β

• C ∈ Z: Minimum cash position

• Si ∈ R≥0: Occurrence time of event i ∈ V

(CNPV )


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

Maximize
∑

i∈V

cf
i β

Si (1)

subject to Sj − Si ≥ δij ((i, j) ∈ E) (2)

S0 = 0 (3)
∑

i∈V :Si≤t

cf
i ≥ C (0 ≤ t ≤ d) (4)
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Feasibility problem NP-complete: Transformation from 3-PARTITION

• Given: Set I ={1, . . . , 3ν} of indices a with sizes sa ∈ N and bound M ∈ N such that

⊲
∑

a∈I sa = νM

⊲ M/4 < sa < M/2 for all a ∈ I

• Question: Does there exist a partition {I1, . . . , Iν} of I such that

⊲
∑

a∈Iµ
sa = M for all µ = 1, . . . , ν?
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2 Two IP formulations

Binary program by Doersch and Patterson (1977)

• xit ∈ {0, 1}: 1 iff Si = t ∈ Z≥0

• ESi, LSi: earliest and latest occurrence times of event i ∈ V

(DP )







Maximize
∑

i∈V

LSi∑

t=ESi

cf
i β

txit (5)

subject to
LSi∑

t=ESi

xit = 1 (i ∈ V ) (6)

LSj∑

t=ESj

txjt −
LSi∑

t=ESi

txit ≥ δij ((i, j) ∈ E) (7)

∑

i∈V

min(t,LSi)∑

τ=ESi

cf
i xiτ ≥ C (t = 0, . . . , d) (8)

xit ∈ {0, 1} (i ∈ V, t = ESi, . . . , LSi) (9)

WI R Christoph Schwindt Symposium on Operations Research 2002, Klagenfurt 4/12



Order-theoretic mixed-binary program

• yi = βSi ≥ 0: Linearization of objective function by Grinold (1972)

• zij ∈ {0, 1}: 1 iff Si ≤ Sj, i.e. yj ≤ yi (defines reflexive weak order in set V )

• εi = βLSi(1 − β)

(WO)







Maximize
∑

i∈V

cf
i yi (10)

subject to yj − βδijyi ≤ 0 ((i, j) ∈ E) (11)

y0 = 1 (12)

εj ≤ yj − yi + zij ≤ 1 ((i, j) ∈ V ×V ) (13)
∑

j∈V

cf
j zji ≥ C (i ∈ V ) (14)

yi ≥ 0 (i ∈ V ) (15)

zij ∈ {0, 1} ((i, j) ∈ V ×V ) (16)
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3 Solution as inventory-constrained scheduling problem

• Cumulative resource (Neumann and S., 1999): storage with safety stock and capacity

• Depleting events: starts of operations; replenishing events: completions of operations

• Schedule events such that inventory is constantly between safety stock and capacity

• Cash position: storage with safety stock C and infinite capacity

• Negative cash flows: depleting events; positive cash flows: replenishing events

• Shortage set: F ⊆ V with
∑

i∈F cf
i < C

Lemma. A schedule S satisfies cash position constraints (4) iff

⊲ for each shortage set F ,

⊲ there exist two events j ∈ F and i /∈ F with cf
j < 0 and cf

i > 0

⊲ such that Sj ≥ Si.
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Minimal delaying alternatives and minimal delaying modes

• Given shortage set F

• Minimal delaying alternative for F : ⊆-minimal set B ⊆ F with
∑

j∈F\B cf
j ≥ C

• Minimal delaying mode for F : pair (i, B) of event i /∈ F , cf
i > 0 and minimal delaying

alternative B for F

Lemma. Minimal delaying alternative B for shortage set F is ⊆-minimal set containing an

event j with cf
j < 0 of each shortage set F ′ satisfying {i ∈ F ′ | cf

i < 0} ⊆ {i ∈ F | cf
i < 0}

and {i ∈ F ′ | cf
i > 0} ⊇ {i ∈ F | cf

i > 0}.

Theorem. Given shortage set F . For each feasible schedule S, there is a minimal delaying

mode (i, B) for F with Sj ≥ Si for all j ∈ B.
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Branch-and-bound algorithm

• Disregard cash position constraints (4): Resource relaxation

• Enumeration node u: Resource relaxation on (expanded) project network

• Solve resource relaxation: schedule S

• Net present value of S is upper bound on net present values in subtree rooted at u

• Determine active shortage set A(S, t) := {i ∈ V | Si ≤ t} at some time t

• Introduce child node v for each minimal delaying mode (i, B) for A(S, t)

• For each child node v: add arcs from {i} × B weighted with 0 to project network
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Solving the resource relaxation

• Primal method

– Objective function convexifiable

– First-order steepest-ascent algorithm iterating time-feasible schedules

– Ascent directions normalized by maximum norm

– Direction finding phase performed in O(n) time

• Dual method

– First-order flattest-descent algorithm

– Flattest-descent directions increase Sj − Si for all j ∈ B

– Direction finding problem decomposes into two independent subproblems

– Subproblems can be solved in O(n) time
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Schedule-generation scheme
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∑
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4 Computational experience

• ProGen/max test set: 630 instances with n = 10, 20, 50, 100, 200, 500, 1000 events

• OS ∈ {0.25, 0.5, 0.75}, cf
i ∈ {−10,−9, . . . , 9, 10}, d = 2.0ESn+1, β = 0.99

• RS = 0.0, i.e. C = min(0,
∑

i∈V cf
i )

• IP’s solved by CPLEX 6.0, branch-and-bound coded in ANSI C

• Pentium PC with 333 MHz and 128 MB RAM, time limit: n seconds

IP Doersch&Patterson MIP Weak order Cumulative resources
popt pins pfeas punk popt pins pfeas punk popt pins pfeas punk

n = 10 72.2 2.2 4.4 21.1 77.8 22.2 0.0 0.0 77.8 22.2 0.0 0.0

n = 20 20.0 3.3 28.9 47.8 62.2 21.1 2.2 14.4 64.4 35.6 0.0 0.0

n = 50 0.0 0.0 3.3 96.7 11.1 3.3 20.0 65.6 66.7 21.1 2.2 10.0

n = 100 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 68.9 10.0 2.2 18.9

n = 200 61.1 6.7 4.4 27.8

n = 500 64.4 1.1 7.8 26.7

n = 1000 70.0 0.0 2.2 27.8
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5 Conclusions

• Capital-rationed net present value problem

• Feasibility problem NP-complete

• Two IP formulations

– Time-indexed model by Doersch and Patterson

– Order-theoretic model of polynomial size

• Formulation as inventory-constrained scheduling problem

• Relax inventory constraints

• Solve relaxations by efficient feasible-directions methods

• Enumerate sets of precedence constraints between replenishing and depleting events

• Branch-and-bound performs well on standard test set
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