A Branch-and-Bound Algorithm for the Capital-Rationed Net Present Value Problem

Outline

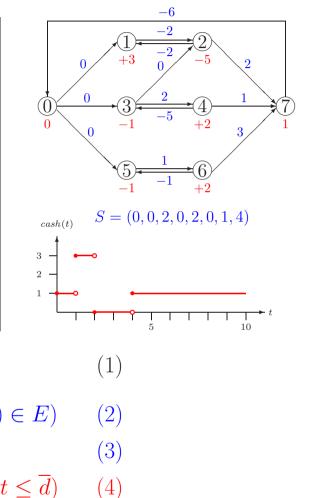
- 1. Problem definition
- 2. Two IP formulations
- 3. Solution as inventory-constrained scheduling problem
- 4. Computational experience
- 5. Conclusions

Problem definition

- $V = \{0, 1, ..., n, n+1\}$: Set of events
- $\delta_{ij} \in \mathbb{Z}$: Minimum time lag between *i* and *j* (if < 0, maximum time lag between *j* and *i*)
- $c_i^f \in \mathbb{Z}$: Cash flow associated with *i*
- 0 < β < 1: Discount rate $-\ln\beta$
- $C \in \mathbb{Z}$: Minimum cash position

•
$$S_i \in \mathbb{R}_{\geq 0}$$
: Occurrence time of event $i \in V$

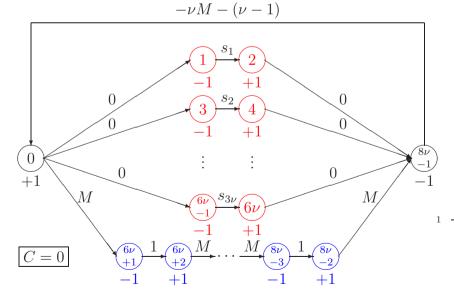
 $(CNPV) \begin{cases} \text{Maximize} & \sum_{i \in V} c_i^f \beta^{S_i} & (1) \\ \text{subject to} & S_j - S_i \ge \delta_{ij} & ((i,j) \in E) & (2) \\ & S_0 = 0 & (3) \\ & & \sum_{i \in V: S_i \le t} c_i^f \ge C & (0 \le t \le \overline{d}) & (4) \end{cases} \end{cases}$



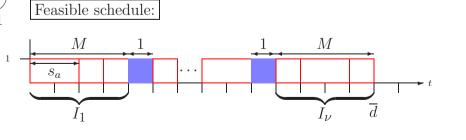
Feasibility problem NP-complete: Transformation from 3-PARTITION

- Given: Set $I = \{1, \ldots, 3\nu\}$ of indices a with sizes $s_a \in \mathbb{N}$ and bound $M \in \mathbb{N}$ such that
 - $\triangleright \sum_{a \in I} s_a = \nu M$ $\triangleright M/4 < s_a < M/2 \text{ for all } a \in I$
- Question: Does there exist a partition $\{I_1, \ldots, I_{\nu}\}$ of I such that

 $\triangleright \sum_{a \in I_{\mu}} s_a = M$ for all $\mu = 1, \dots, \nu$?



At any time, cash position is no greater than 1 Between S_i and S_{i+1} cash position equals 0 $(i = 1, 3, ..., 8\nu - 3)$ No event between *i* and i + 1 $(i = 1, 3, ..., 8\nu - 3)$ Time of occurrence of events $6\nu + 1, ..., 8\nu - 2$ fixed in advance Within time *M* three pairs of events *i* and i + 1 must occur $(i = 1, 3, ..., 6\nu - 1)$



WIOR	Christoph Schwindt	tions Research 2002, Klagenfurt		4/12	
2	Two IP formulation	ons			
Bin	ary program by Doersch	and Patterson (1977)			
•	$x_{it} \in \{0, 1\}$: 1 iff $S_i = t$	$z \in \mathbb{Z}_{>0}$			
		atest occurrence times of e	vent $i \in V$		
		$\sum_{i=1}^{LS_i} f_{i}$ of	$(i \in V)$ $((i, j) \in E)$ $(t = 0, \dots, \overline{d})$ $(i \in V, t = ES_i, \dots, LS_i)$		
	Maximize $\sum_{i \in V}$	$\sum_{t=ES_i} c_i^{\prime} \beta^{\iota} x_{it}$		(5)	
	subject to $\sum_{k=1}^{LS}$	$x_{it} = 1$	$(i \in V)$	(6)	
(T	(DP)	S_i $j \qquad LS_i$			
	(DT) $\sum_{t=E}$	$\sum_{i \leq j} tx_{jt} - \sum_{t \in ES_i} tx_{it} \ge \delta_{ij}$	$((i,j)\in E)$	(7)	
	\sum	$\sum_{i=1}^{min(t,LS_i)} c_i^f x_{i-1} \ge C$	$(t=0,\overline{d})$	(8)	
	$\sum_{i \in V}$	$\sum_{\tau=ES_i} c_i \omega_{i\tau} \geq 0$	$(v = 0, \dots, \omega)$	(0)	
	$\langle x_{it} \rangle$	$\in \{0,1\}$	$(i \in V, t = ES_i, \dots, LS_i)$	(9)	

Order-theoretic mixed-binary program

- $y_i = \beta^{S_i} \ge 0$: Linearization of objective function by Grinold (1972)
- $z_{ij} \in \{0,1\}$: 1 iff $S_i \leq S_j$, i.e. $y_j \leq y_i$ (defines reflexive weak order in set V)

•
$$\varepsilon_i = \beta^{LS_i}(1-\beta)$$

(

$$WO) \begin{cases} \text{Maximize } \sum_{i \in V} c_i^f y_i & (10) \\ \text{subject to } y_j - \beta^{\delta_{ij}} y_i \leq 0 & ((i,j) \in E) & (11) \\ y_0 = 1 & (12) \\ \varepsilon_j \leq y_j - y_i + z_{ij} \leq 1 & ((i,j) \in V \times V) & (13) \\ \sum_{j \in V} c_j^f z_{ji} \geq C & (i \in V) & (14) \\ y_i \geq 0 & (i \in V) & (15) \\ z_{ij} \in \{0,1\} & ((i,j) \in V \times V) & (16) \end{cases}$$

3 Solution as inventory-constrained scheduling problem

- Cumulative resource (Neumann and S., 1999): storage with safety stock and capacity
- Depleting events: starts of operations; replenishing events: completions of operations
- Schedule events such that inventory is constantly between safety stock and capacity
- \bullet Cash position: storage with safety stock C and infinite capacity
- Negative cash flows: depleting events; positive cash flows: replenishing events
- Shortage set: $F \subseteq V$ with $\sum_{i \in F} c_i^f < C$

Lemma. A schedule S satisfies cash position constraints (4) iff

 \triangleright for each shortage set F,

 \triangleright there exist two events $j \in F$ and $i \notin F$ with $c_i^f < 0$ and $c_i^f > 0$

 \triangleright such that $S_j \ge S_i$.

Minimal delaying alternatives and minimal delaying modes

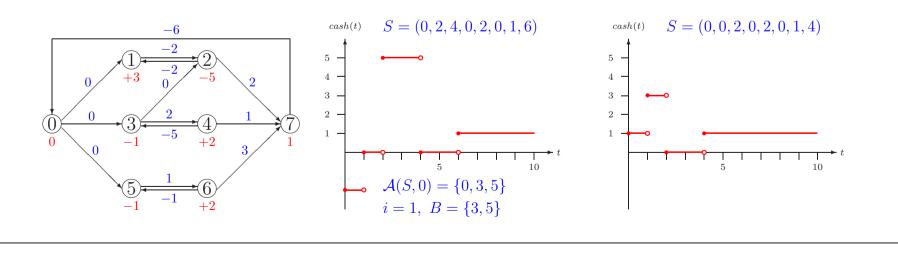
- Given shortage set F
- Minimal delaying alternative for $F: \subseteq$ -minimal set $B \subseteq F$ with $\sum_{j \in F \setminus B} c_j^f \geq C$
- Minimal delaying mode for F: pair (i, B) of event $i \notin F$, $c_i^f > 0$ and minimal delaying alternative B for F

Lemma. Minimal delaying alternative B for shortage set F is \subseteq -minimal set containing an event j with $c_j^f < 0$ of each shortage set F' satisfying $\{i \in F' \mid c_i^f < 0\} \subseteq \{i \in F \mid c_i^f < 0\}$ and $\{i \in F' \mid c_i^f > 0\} \supseteq \{i \in F \mid c_i^f > 0\}$.

Theorem. Given shortage set F. For each feasible schedule S, there is a minimal delaying mode (i, B) for F with $S_j \ge S_i$ for all $j \in B$.

Branch-and-bound algorithm

- Disregard cash position constraints (4): Resource relaxation
- \bullet Enumeration node u: Resource relaxation on (expanded) project network
- \bullet Solve resource relaxation: schedule S
- \bullet Net present value of S is upper bound on net present values in subtree rooted at u
- Determine active shortage set $\mathcal{A}(S,t) := \{i \in V \mid S_i \leq t\}$ at some time t
- Introduce child node v for each minimal delaying mode (i, B) for $\mathcal{A}(S, t)$
- For each child node v: add arcs from $\{i\} \times B$ weighted with 0 to project network



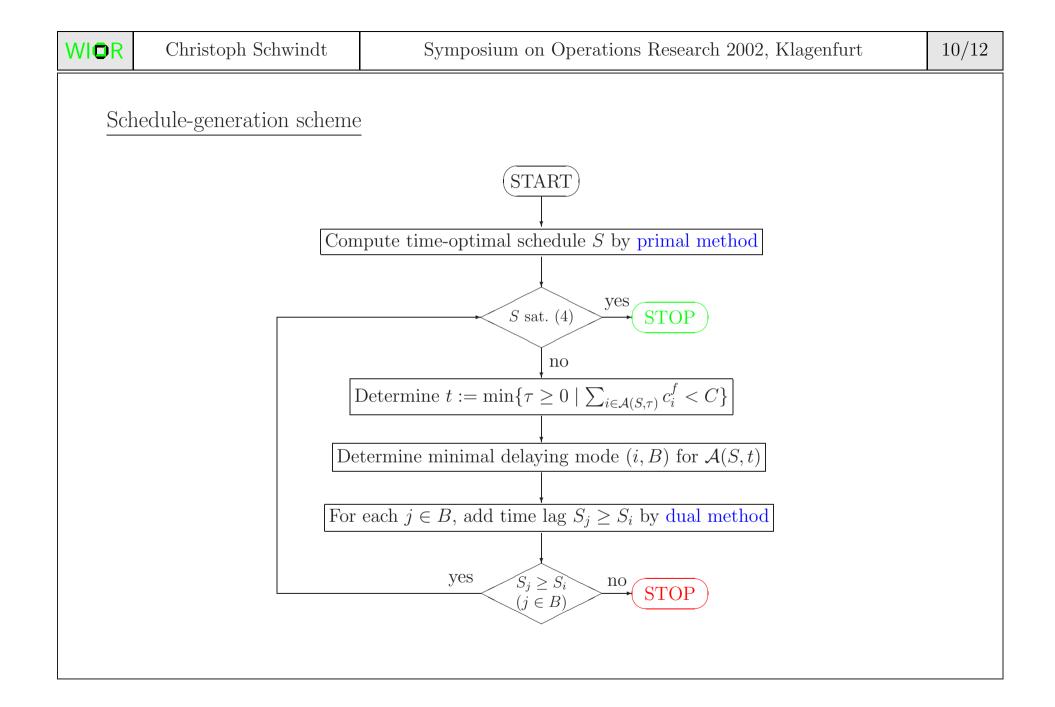
Solving the resource relaxation

• Primal method

- Objective function convexifiable
- First-order steepest-ascent algorithm iterating time-feasible schedules
- Ascent directions normalized by maximum norm
- Direction finding phase performed in ${\cal O}(n)$ time

• Dual method

- First-order flattest-descent algorithm
- Flattest-descent directions increase $S_j S_i$ for all $j \in B$
- Direction finding problem decomposes into two independent subproblems
- Subproblems can be solved in O(n) time



4 Computational experience

- ProGen/max test set: 630 instances with n = 10, 20, 50, 100, 200, 500, 1000 events
- $OS \in \{0.25, 0.5, 0.75\}, c_i^f \in \{-10, -9, \dots, 9, 10\}, \overline{d} = 2.0ES_{n+1}, \beta = 0.99$
- RS = 0.0, i.e. $C = \min(0, \sum_{i \in V} c_i^f)$
- \bullet IP's solved by CPLEX 6.0, branch-and-bound coded in ANSI C
- \bullet Pentium PC with 333 MHz and 128 MB RAM, time limit: n seconds

	IP Doersch&Patterson			MIP Weak order			Cumulative resources					
	p_{opt}	p_{ins}	p_{feas}	p_{unk}	p_{opt}	p_{ins}	p_{feas}	p_{unk}	p_{opt}	p_{ins}	p_{feas}	p_{unk}
n = 10	72.2	2.2	4.4	21.1	77.8	22.2	0.0	0.0	77.8	22.2	0.0	0.0
n = 20	20.0	3.3	28.9	47.8	62.2	21.1	2.2	14.4	64.4	35.6	0.0	0.0
n = 50	0.0	0.0	3.3	96.7	11.1	3.3	20.0	65.6	66.7	21.1	2.2	10.0
n = 100	0.0	0.0	0.0	100.0	0.0	0.0	0.0	100.0	68.9	10.0	2.2	18.9
n = 200									61.1	6.7	4.4	27.8
n = 500									64.4	1.1	7.8	26.7
n = 1000									70.0	0.0	2.2	27.8

5 Conclusions

- Capital-rationed net present value problem
- Feasibility problem NP-complete
- Two IP formulations
 - Time-indexed model by Doersch and Patterson
 - Order-theoretic model of polynomial size
- Formulation as inventory-constrained scheduling problem
- Relax inventory constraints
- Solve relaxations by efficient feasible-directions methods
- Enumerate sets of precedence constraints between replenishing and depleting events
- Branch-and-bound performs well on standard test set