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1 Problem definition

oV ={0,1,...,n,n+ 1} Set of events

e );; € Z: Minimum time lag between 7 and j
(if < 0, maximum time lag between j and 7)

o c{ € Z: Cash flow associated with ¢

e ) < 3 < 1: Discount rate —In 3 sttt

e (' € 7Z: Minimum cash position

e 5; € R Occurrence time of event ¢ € V

)
Maximize

subject to
(CNPV)

S =(0,0,2,0,2,0,1,4)

> ol g (1)

eV

Sj — 8 = 0 ((4,7) e E)  (2)

Sy =0 (3)
o >C (0<t<d) (4

2.
1eV:5; <t
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Feasibility problem NP-complete: Transformation from 3-PARTITION

e Given: Set I={1,...,3v} of indices a with sizes s, € N and bound M € N such that
> ZaGI Sa = vM

> M/4 < s, < M/2forallael
e Question: Does there exist a partition {Iy, ..., I,} of I such that
Dzaelusa:Mfor all u=1,...,v7

—vM — (v—1)

+1

(i=1,3,...,6v—1)

| Feasible schedule: |

M 1 1 M

At any time, cash position is no greater than 1

Between S; and S;,; cash position equals 0 (i = 1,3,...,8v — 3)
No event between ¢ and i+ 1 (¢ =1,3,...,8v — 3)

Time of occurrence of events 6v + 1,...,8v — 2 fixed in advance
Within time M three pairs of events ¢ and ¢ + 1 must occur
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2 Two IP formulations

Binary program by Doersch and Patterson (1977)

.IitE{O,l}: 1lﬁSZ:t€ZEO

o [1S;, LS;: earliest and latest occurrence times of event ¢ € V

r LS,
Maximize S° 3. ¢ glay,
i€V t=ES;
LS,
subject to Y xy =1 (1eV)
t=ES;
LSj LS;
PP S > - > w26 (i) € )
t:ESj t=ES;
min(t,LS;) B
S Y du>cC (t=0,...,d)
1€V t=ES;
\ CCZ'tE{O,l} (iEV, t:ESZ',...,LSZ')
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Order-theoretic mixed-binary program

e y; = (3% > 0: Linearization of objective function by Grinold (1972)
o zi; € {0,1}: 1iff §; < 5;, ie. y; < y; (defines reflexive weak order in set V')

o, =p"(1-p)

)
Maximize

subject to

(WO) S

> cly (10)
eV

y; — oy, <0 ((¢,4) € E) (11)
yo =1 (12)
<y —yi+tz; <1 ((,74)eVxV) (13)
> clz >0 (ieV) (14)
Jjev

yi > 0 (i e V) (15)

zij € {0,1} ((7,5) € VxV)  (16)
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3 Solution as inventory-constrained scheduling problem

e Cumulative resource (Neumann and S., 1999): storage with safety stock and capacity
e Depleting events: starts of operations; replenishing events: completions of operations

e Schedule events such that inventory is constantly between safety stock and capacity

e Cash position: storage with safety stock C' and infinite capacity

e Negative cash flows: depleting events; positive cash flows: replenishing events

e Shortage set: F¥ C V with > . » o <C

Lemma. A schedule S satisfies cash position constraints (4) iff

> for each shortage set F',

> there exist two events j € F and ¢ ¢ F with cj < 0 and C‘Z-f > ()

> such that S; > 5;.
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Minimal delaying alternatives and minimal delaying modes

e Given shortage set F

e Minimal delaying alternative for F: C-minimal set B C F with > jeF\B c:; > C

e Minimal delaying mode for F": pair (i, B) of event i ¢ F c;.f > (0 and minimal delaying
alternative B for F

Lemma. Minimal delaying alternative B for shortage set I'is C-minimal set containing an
event j with cf < 0 of each shortage set F” satisfying {i € F' | ¢/ <0} C{ie F|c <0}

and {ie F'| ¢ >0} D{ie F|c >0}

Theorem. Given shortage set F'. For each feasible schedule .S, there is a minimal delaying

mode (i, B) for F' with S; > S; for all j € B.
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Branch-and-bound algorithm

e Disregard cash position constraints (4): Resource relaxation

e Enumeration node u: Resource relaxation on (expanded) project network

e Solve resource relaxation: schedule S

e Net present value of S is upper bound on net present values in subtree rooted at u

e Determine active shortage set A(S,t) :={i € V | S; <t} at some time ¢

e Introduce child node v for each minimal delaying mode (i, B) for A(S,t)

e For each child node v: add arcs from {7} x B weighted with 0 to project network

— ——0

cash(t) S = (0,2,4,072707 176)

T 1T T T 7 11
5

L . A(S,0) ={0,3,5}
i=1, B=1{35}

I
10

t

cash(t) S = (070,2,0,2707174)
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Solving the resource relaxation

e Primal method

— Objective function convexifiable
— First-order steepest-ascent algorithm iterating time-feasible schedules
— Ascent directions normalized by maximum norm

— Direction finding phase performed in O(n) time

e Dual method

— First-order flattest-descent algorithm
— Flattest-descent directions increase S; — S; for all j € B
— Direction finding problem decomposes into two independent subproblems

— Subproblems can be solved in O(n) time
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Schedule-generation scheme

Compute time-optimal schedule S by primal method

es

y _
S sat. (4) (sToP )

no

Determine ¢ := min{r > 0 | >_c 45.) o <y

Determine minimal delaying mode (i, B) for A(S,t)

For each j € B, add time lag S; > S; by dual method

yes g > Si no
<) ( STOP )
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4 Computational experience

e ProGen/max test set: 630 instances with n = 10, 20, 50, 100, 200, 500, 1000 events
e 0S € {0.25,0.5,0.75}, ¢/ € {—=10,—-9,...,9,10}, d = 2.0ES,11, 8 = 0.99
e RS =0.0,ic. C=min(0,Y, . c)

e [P’s solved by CPLEX 6.0, branch-and-bound coded in ANSI C
e Pentium PC with 333 MHz and 128 MB RAM, time limit: n seconds

n = 10
n = 20
n = 50
n = 100
n = 200
n = 500

n = 1000

IP DoerschédPatterson MIP Weak order Cumulative resources

Popt  Pins Pfeas Punk | Popt Pins Pfeas Punk | Popt Pins Pfeas Punk
722 22 44 2111778 222 00 00778 222 00 0.0
20.0 3.3 289 4781622 21.1 22 1441644 356 0.0 0.0
0.0 00 33 96.7|11.1 3.3 200 656/66.7 21.1 2.2 10.0
0.0 0.0 0.0 100.0] 0.0 0.0 0.0 100.0|68.9 10.0 2.2 189
61.1 6.7 44 278

644 1.1 78 206.7

70.0 0.0 22 278
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5 Conclusions

e Capital-rationed net present value problem

e Feasibility problem NP-complete

e T'wo IP formulations

— Time-indexed model by Doersch and Patterson

— Order-theoretic model of polynomial size

e Formulation as inventory-constrained scheduling problem

e Relax inventory constraints

e Solve relaxations by efficient feasible-directions methods

e Enumerate sets of precedence constraints between replenishing and depleting events

e Branch-and-bound performs well on standard test set




