

Scheduling with Storage Resources

CH. SCHWINDT, UNIVERSITY OF KARLSRUHE (TH)

Outline

- 1. Problem
- 2. Model
- 3. Solution methods
 - 3.1 Branch-and-bound
 - 3.2 Priority-rule method
- 4. Conclusions

1 Problem

• Given:

- > Set of operations executed on dedicated processing units
- > Set of input and output products depleted and replenished in batch mode

- ▶ Input and output quantities for operations
- ▶ Storage facilities of finite capacity for stocking products
- ▶ Initial stocks and prescribed safety stocks for products
- ▶ Minimum and maximum time lags between start times of operations

• Sought:

▶ Feasible production schedule minimizing some regular objective function

Model

Notations

 $\triangleright O$: Set of operations $i=0,1,\ldots,n,n+1$ with processing times p_i $(p_0=p_{n+1}=0)$

 $\triangleright \mathcal{R}$: Set of storage resources k with safety stocks \underline{R}_k and storage capacities \overline{R}_k

 $\triangleright r_{ik}$: Increase in inventory level of resource k by execution of operation i

 $\triangleright O_k^- = \{i \in O \mid r_{ik} < 0\}, O_k^+ = \{i \in O \mid r_{ik} > 0\}$: Sets of depleting and replenishing operations for resource k

 $\triangleright \delta_{ij}$: Time lag between linked operations $(i,j) \in E \subseteq O \times O$, distances d_{ij}

 $\triangleright S = (S_0, S_1, \dots, S_{n+1})$: Production schedule

 $\triangleright r_k(S,t) = \sum_{i \in O_k^-: S_i \le t} r_{ik} + \sum_{i \in O_k^+: S_i + p_i \le t} r_{ik}$: Inventory in resource k at time t

 $\triangleright f: \mathbb{R}^{n+2}_{>0} \to \mathbb{R}$: Regular objective function in start times $S_i \ (i \in O)$

• Model $\begin{cases} \text{Minimize} & f(S) \\ \text{subject to} & \underline{R}_k \leq r_k(S,t) \leq \overline{R}_k & (k \in \mathcal{R}, \ t \geq 0) \\ S_j - S_i \geq \delta_{ij} & ((i,j) \in E) \\ S_i \geq 0 & (i \in O) \end{cases}$

3 Solution Methods

3.1 Branch-and-Bound

- Scheduling is ...
 - ▶ defining precedence relationships between operations competing for scarce resources (Sequencing: hard)
 - ▶ optimizing objective function subject to prescribed time lags and established precedence relationships (Temporal scheduling: tractable)
- Enumeration scheme

Resolving resource conflicts

• Inventory excess at time t: $r_k(S,t) > \overline{R}_k$

- \triangleright Delay completion of some operation $j \in O_k^+$ up to start of some operation $i \in O_k^-$
- \triangleright Precedence relationship $S_j + p_j \ge S_i$: $\delta_{ij} = -p_j$ (maximum time lag)
- Inventory shortage at time t: $r_k(S,t) < \underline{R}_k$
 - \triangleright Delay start of some operation $j \in O_k^-$ up to completion of some operation $i \in O_k^+$
 - \triangleright Precedence relationship $S_j \ge S_i + p_i$: $\delta_{ij} = p_i$ (minimum time lag)

3.2 Priority-rule method

Why classical priority-rule methods don't work

- Stepwise expand partial schedule by scheduling one eligible operation in each iteration
- Machine scheduling or project scheduling with renewable resources: partial schedules are feasible
- Scheduling with storage resources:
 - ▶ Material-availability constraints and storage-capacity constraints
 - > Feasibility of partial schedules would require simultaneous scheduling of several operations

▶ Allow for infeasible partial schedules

Two-phase approach

- Phase 1: Scheduling subject to material-availability constraints
 - ▶ Relax storage-capacity constraints
 - \triangleright Operation j eligible if
 - \circ all operations $i \in O$ with $d_{ij} \geq 0$ and $d_{ji} < 0$ have been scheduled
 - o for resulting partial schedule, terminal inventories do not fall below safety stocks
 - \triangleright Select some eligible activity j^* according to priority indices $\pi(j)$
 - \triangleright Schedule j^* at time $t^* = \min\{t \geq ES_{j^*} \mid r_k(S^c, \tau) + r_{jk} \geq \underline{R}_k \text{ for } k \in \mathcal{R}, \ \tau \geq t\}$
- Pegging by precedence relationships according to FIFO strategy
 - \triangleright Iterate operations $i \in O_k^+$ in order of nondecreasing $S_i + p_i$ and allot output of $i \in O_k^+$ to operations $j \in O_k^-$ in order of nondecreasing S_j
 - \triangleright Introduce time lag $\delta_{ij} = p_i$ between $i \in O_k^+$ and $j \in O_k^-$ consuming output of i
- Phase 2: Scheduling subject to precedence and storage-capacity constraints
 - ▶ Relax material-availability constraints
 - ▶ Proceed analogously to phase 1, replacing material-availability with storage-capacity constraints

Serial schedule-generation scheme (phase 1)

```
u := 0:
2: S_0 := 0, \mathcal{C} := \{0\};
     for all i \in O do (*initialize ES_i and LS_i*)
        ES_i := d_{0i}, LS_i := -d_{i0};
     while \mathcal{C} \neq O do
        \mathcal{E} := \{ j \in O \setminus \mathcal{C} \mid Pred(j) \subseteq \mathcal{C}, \sum_{i \in \mathcal{C} \cup \{j\}} r_{ik} \ge \underline{R}_k \text{ for } k \in \mathcal{R} \};
        if \mathcal{E} = \emptyset then terminate:
        j^* := \min\{j \in \mathcal{E} \mid \pi(j) = \operatorname{ext}_{h \in \mathcal{E}} \pi(h)\};
        t^* := \min\{t \geq ES_{j^*} \mid r_k(S^{\mathcal{C}}, \tau) + r_{j^*k} \geq \underline{R}_k \text{ for } k \in \mathcal{R}, \ \tau \geq t\};
        if t^* > LS_{i^*} then (* unschedule and restart *)
            u := u + 1:
            if u > \overline{u} then terminate;
            \mathcal{U} := \{ i \in \mathcal{C} \mid LS_{i^*} = S_i - d_{i^*i} \};
            for all i \in \mathcal{U} do d_{0i} := S_i + t^* - LS_{i^*};
            update distances d_{ij} for all i, j \in O and goto line 2;
        else (* schedule j^* at time t^* *)
            S_{i^*} := t^*, \ \mathcal{C} := \mathcal{C} \cup \{j^*\};
            for all j \in O \setminus C do (*update ES_i and LS_i*)
                ES_i := \max(ES_i, S_{i^*} + d_{i^*i});
                LS_{i} := \min(LS_{i}, S_{i^{*}} - d_{ii^{*}});
     return S:
```


Experimental performance analysis

- Branch-and-bound algorithm
- Randomized multi-pass priority-rule based method
- 36 problem instances with 12 to 90 operations
- Storage capacity and storage time settings FIS, FWQ, FWS

					ı	i					ı	i					ı																			
36	<u>ა</u>	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	೮٦	4	ಬ	2 +		No.
90	75	60	45	30	15	90	75	60	45	30	15	72	60	48	36	24	12	90	75	60	45	30	15	90	75	60	24	30	15	72	60	48	36	$\frac{12}{24}$	19	n
yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no	no	no	no	no	on	no	no	no	no	no	no	no	no	no	no	no	nn	FIS
no	no	no	no	no	no	yes	yes	yes	yes	yes	yes	no	no	no	no	no	no	no	no	no	no	no	no	yes	yes	$\overline{\mathrm{yes}}$	$\tilde{ ext{yes}}$	yes	yes	no	no	no	no	no	nn	FWQ
yes	yes	yes	yes	yes	yes	no	no	no	no	no	no	no	no	no	no	no	no	yes	yes	yes	yes	yes	yes	no	no	no	no	no	no	no	no	no	no	no	nn	FWS
24	20	16	12	∞	4	27	23	19	15	11	7	24	20	16	12	∞	4	24	20	16	12	∞	4	27	23	19	15	11	7	24	20	16	12	∞ ,	4	LB
32	28	24	8	16	12	35	32	27	23	19	∞	32	28	24	20	16	12	32	28	24	20	16	12	35	32	27	23	19	15	32	28	24	20	16	61	S_{n+1}^{bb}
*	*	*		*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	* -	×	Term.
32	28	24	8	16	12	37	32	27	25	19	8	32	28	24	20	16	12	32	28	24	8	16	12	35	32	27	23	19	15	32	28	24	20	16	19	S_{n+1}^{pr}

5 Conclusions

- Scheduling with storage resources
 - ▶ Operations consuming input products and producing output products
 - ▶ Prescribed safety stocks and limited storage capacities for products
 - ▶ Minimum and maximum time lags between operations
- Branch-and-bound method
 - ▶ Relax inventory constraints
 - ▶ Branch over alternative precedence relationships resolving resource conflicts
- Priority-rule method
 - \triangleright Two-phase method
 - ▶ Ensure material availability by precedence relationships
- Talk by Norbert Trautmann
 - ▶ Renewable resources
 - ▶ Sequence-dependent changeover times on processing units
 - ▶ Performance analysis comparing priority-rule to branch-and-bound method