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1 Uncertainty in Project Scheduling

Reasons for uncertainty in project scheduling

• Imprecise time or resource estimations (project is a unique undertaking)

• Unforeseen downtimes of resources or staff time offs

• Late delivery of raw martials or bought-in parts

• Reworking time

Approaches to cope with uncertainty

Scheduling subject to uncertainty

Anticipative approach Reactive approach

Stochastic scheduling Robust scheduling

Baseline schedule

Rescheduling

Revised schedule

Online scheduling

Scheduling policyScheduling policy
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2 Robustness and Feasible Relations

Notations
V Set of activities i = 0, 1, . . . , n, n + 1 of durations pi

E ⊆ V × V Temporal relation
δij Minimum time lag between activities i and j

N = (V, E, δ) MPM network with node set V , arc set E, and arc weights δij

R Set of renewable resources
Rk Capacity of resource k

rik Requirement of activity i for resource k

Si, S = (Si)i∈V Start time of activity i, schedule
rk(S, t) Requirements for resource k at time t given schedule S

Temporal constraints

S ∈ ST :

{

Sj − Si ≥ δij ((i, j) ∈ E)

S0 = 0

Resource constraints

S ∈ SR : rk(S, t) ≤ Rk (k ∈ R; t ≥ 0)

S := ST ∩ SR
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Measure of robustness

Project early and late free floats

EFF i = min
(i,j)∈E

(ESj − δij) − ESi

LFF i = LSi − max
(j,i)∈E

(LSj + δji)

Schedule early and late free floats

EFF i(S) = min
(i,j)∈E

(Sj − δij) − Si

LFF i(S) = Si − max
(j,i)∈E

(Sj + δji)

f(S) =
∑

i∈V

w
f
i [EFF i(S) + LFF i(S)] =

∑

i∈V

w
f
i [ min

(i,j)∈E
(Sj − δij) − max

(j,i)∈E
(Sj + δji)]

• Total weighted free float f(S) measure of schedule robustness
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Including resource constraints: Feasible relations

• Break up minimum forbidden sets by precedence relationships (i, j) with Sj − Si ≥ pi

• Precedence relationships form asymmetric (precedence) relation ρ

• Relation polytope ST (ρ) := {S ∈ ST | Sj − Si ≥ pi for all (i, j) ∈ ρ}

• Relation network N(ρ) = (V, E ∪ ρ, δρ) with δ
ρ
ij = pi for (i, j) ∈ ρ

D(ρ): Distance matrix of relation network N(ρ)

• Precedence relation ρ time-feasible: ST (ρ) 6= ∅

• Time-feasible precedence relation ρ feasible: ST (ρ) ⊆ S

• Induced strict order Θ(D(ρ)) := {(i, j) ∈ V × V | i 6= j, d
ρ
ij ≥ pi}

Theorem. Precedence relation ρ is feasible if and only if

(i) relation network N(ρ) does not contain cycle of positive length

(ii) no antichain in strict order Θ(D(ρ)) is forbidden



Robust Project Scheduling 3. Solution Method: Structural Issues 7

Example: Precedence relation ρ = {(2, 4), (3, 2)}

Relation network N(ρ):
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Distance matrix D(ρ):

D(ρ) =


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• Induced strict order Θ(D(ρ)): Transitively reduced precedence graph
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• ⊆-maximal antichains: {0}, {1, 2}, {1, 3}, {4}, {5}
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Optimization problem

• Precedence relations (i, j) ∈ ρ influence total weighted free float

f(ρ, S) :=
∑

i∈V

w
f
i ( min

(i,j)∈E∪ρ
[Sj − δ

ρ
ij] − max

(j,i)∈E∪ρ
[Sj + δ

ρ
ji])

• Problem: Determine feasible relation ρ and (feasible) baseline schedule S ∈ ST (ρ)

with maximum total weighted free float f(ρ, S)

(P)







Maximize f(ρ, S)

subject to ST (ρ) ⊆ S
S ∈ ST (ρ)

• Subproblems:

⊲ Temporal scheduling problem for given precedence relation ρ:

Maximize {f(S, ρ) | S ∈ ST (ρ)}

⊲ Feasibility problem for given precedence relation ρ with ST (ρ) 6= ∅

ST (ρ)
?
⊆ S



Robust Project Scheduling 3. Solution Method: Structural Issues 9

3 Solution method

3.1 Structural Issues

Properties of objective function and feasible region

• Function f(ρ, ·) piecewise linear and concave in S

• Temporal scheduling problem can be transformed into linear program

(LP(ρ))



























Maximize
∑

i∈V w
f
i (xe

i + xl
i)

subject to Sj − xe
i ≥ δ

ρ
ij (i ∈ V, (i, j) ∈ E ∪ ρ)

Sj + xl
i ≤ −δ

ρ
ji (i ∈ V, (j, i) ∈ E ∪ ρ)

Sj − Si ≥ δ
ρ
ij ((i, j) ∈ E ∪ ρ)

S0 = 0

• Function f(·, S) nonincreasing in ρ

• ST (ρ) nonincreasing in ρ

• If (P) solvable, there exists optimal and ⊆-minimal feasible relation ρ
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Properties of time-feasible relation ρ and strict order θ = Θ(D(ρ))

• ρ feasible iff weight w(Uk) of maximum-weight antichain Uk in θ with weights rik no

greater than capacity Rk for all k ∈ R

• Antichain in θ corresponds to stable set in (transitive) precedence graph G(θ)

• Weight of maximum-weight stable set can be determined by computing value of mini-

mum (0, n + 1)-flow in (transitively reduced) precedence graph G(θ) with lower node

capacities rik

• Maximum-weight antichain Uk coincides with maximum (0, n + 1)-node-cut in G(θ)

Example:

Minimum (0, 5)-flow and maximum (0, 5)-node-cut for ρ = {(2, 4), (3, 2)}
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3.2 Branch-and-Bound

Enumeration scheme

initialize list of time-feasible relations Q := {∅} and lower bound f ∗ := −∞;

repeat

delete some relation ρ from list Q;

determine maximum-float schedule S by solving temporal scheduling problem LP(ρ);

if Θ(D(ρ′)) 6⊆ Θ(D(ρ)) for all ρ′ ∈ Q and f(ρ, S) > f ∗ then

for all k ∈ R do determine maximum-weight antichain Uk in Θ(D(ρ));

if w(Uk) ≤ Rk for all k ∈ R then put ρ∗ := ρ, S∗ := S, f ∗ := f(ρ∗, S∗);

else

select some k ∈ R with w(Uk) > Rk;

compute set B of all minimal delaying alternatives for Uk;

for all B ∈ B do

for all i ∈ Uk \ B do

set ρ′ := ρ ∪ ({i} × B);

if ST (ρ′) 6= ∅ then add ρ′ on list Q;

until Q = ∅;
if f ∗ > −∞ then return (ρ∗, S∗);
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Example: Resource capacity R = 3

Iteration 1, root node 0: ρ = ∅
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• S = (0, 0, 4, 0, 2, 5), f(ρ, S) = 8

• U = {1, 2, 4}, w(U) = 5 > R

• B = {{1, 2}, {4}}

• ρ′1 = {(1, 4)}, ρ′2 = {(2, 4)},
ρ′3 = {(4, 1), (4, 2)}

Iteration 2, node 1: ρ = {(1, 4)}

1

3 4

2

5

1 1

2 3

0

1

2
3

1

2

1

1

• S = (0, 0, 3, 0, 4, 7), f(ρ, S) = 6

• U = {2, 4}, w(U) = 4 > R

• B = {{2}, {4}}

• ρ′1,1 = {(1, 4), (2, 4)}, ρ′1,2 = {(1, 4), (4, 2)}
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Iteration 3, node 1.1: ρ = {(1, 4), (2, 4)} ⊇ ρ′ = ρ2 = {(2, 4)}

Iteration 4, node 2: ρ = {(2, 4)}
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• S = (0, 0, 2, 0, 4, 7), f(ρ, S) = 4

• U = {1, 2, 3}, w(U) = 4 > R

• B = {{1}, {2}, {3}}

• ρ′2,1 = {(2, 4), (1, 2)}, ρ′2,2 = {(2, 4), (3, 2)},
ρ′2,3 = {(2, 4), (1, 3)}, ρ′2,4 = {(2, 4), (2, 1)},

ρ′2,5 = {(2, 4), (2, 3)}, ρ′2,6 = {(2, 4), (3, 1)}

Iteration 5, node 2.1: ρ = {(2, 4), (1, 2)}
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• S = (0, 0, 3, 0, 4, 7), f(ρ, S) = 2

• U = {1, 3}, w(U) = 3 = R

• ρ∗ := ρ, S∗ := S, f ∗ := 2
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Iteration 6, node 2.2: ρ = {(2, 4), (3, 2)}
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• S = (0, 0, 3, 0, 4, 7), f(ρ, S) = 3

• U = {1, 3}, w(U) = 3 = R

• ρ∗ := ρ, S∗ := S, f ∗ := 3

Iteration 7: Q = ∅, return (ρ∗, S∗)
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EFF 1(S
∗) = 1, EFF 3(S

∗) = 1,

LFF 2(S
∗) = 1
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4 Conclusions

Summary

• Robust project scheduling: robust baseline schedule combined with scheduling policy

for resolving resource conflicts during implementation

• Measure of robustness: total weighted free float of schedule

• Temporal scheduling problem: linear program

• Feasibility problem for relation: minimum-flow problem

Further research

• Implementation and testing

• Expansion to sequence-dependent changeover times and cumulative resources

• Application to process scheduling in the chemical industry

• Comparison to alternative approaches under different uncertainty scenarios (reschedul-

ing, pure online scheduling)


