Robust Project Scheduling: An Order-Based Approach

Ch. Schwindt, Clausthal University of Technology

<u>Outline</u>

- 1. Uncertainty in Project Scheduling
- 2. Robustness and Feasible Relations
- 3. Solution Method
 - 3.1 Structural Issues
 - 3.2 Branch-and-Bound
- 4. Conclusions

1 Uncertainty in Project Scheduling

Reasons for uncertainty in project scheduling

- Imprecise time or resource estimations (project is a *unique* undertaking)
- Unforeseen downtimes of resources or staff time offs
- Late delivery of raw martials or bought-in parts
- Reworking time

Approaches to cope with uncertainty

Related literature

Scheduling subject to uncertainty:

- Aytug, H., Lawley, M. A., McKay, K., Mohan, S., Uzsoy, R. (2005), Executing production schedules in the face of uncertainties: A review and some future directions. *European Journal of Operational Research 161*, 86–110
- Herroelen, W. S., Leus, R. (2005), Project scheduling under uncertainty: Survey and research potentials. *European Journal of Operational Research 165*, 289–306

Robust project scheduling:

- Herroelen, W. S., Leus, R. (2004), Robust and reactive project scheduling: A review and classification of procedures. *International Journal of Production Research* 42, 1599–1620
- Leus, R. and Herroelen, W. S. (2004), Stability and resource allocation in project scheduling. *IIE Transactions 36*, 667–682
- S. (2005), Resource Allocation in Project Management. Springer, Berlin

Algorithmic graph theory:

- Kaerkes, R., Leipholz, B. (1977), Generalized network functions in flow networks. *Operations Research Verfahren 27*, 225–273
- Möhring, R. H. (1985), Algorithmic aspects of comparability graphs and interval graphs. In: Rival, I. (ed.) *Graphs and Orders*. D. Reidel Publishing Company, Dordrecht, pp. 41–101

2 Robustness and Feasible Relations

Notations

V	Set of activities $i = 0, 1,, n, n + 1$ of durations p_i
$E \subseteq V \times V$	Temporal relation
δ_{ij}	Minimum time lag between activities i and j
$N = (V, E, \delta)$	MPM network with node set V, arc set E, and arc weights δ_{ij}
\mathcal{R}	Set of renewable resources
R_k	Capacity of resource k
r_{ik}	Requirement of activity i for resource k
$S_i, S = (S_i)_{i \in V}$	Start time of activity i , schedule
$r_k(S,t)$	Requirements for resource k at time t given schedule S

Temporal constraints

$$S \in \mathcal{S}_T : \left\{ \begin{array}{l} S_j - S_i \ge \delta_{ij} & ((i,j) \in E) \\ S_0 = 0 \end{array} \right.$$

Resource constraints

$$S \in \mathcal{S}_R : r_k(S, t) \le R_k \ (k \in \mathcal{R}; t \ge 0)$$
$$\mathcal{S} := \mathcal{S}_T \cap \mathcal{S}_R$$

Measure of robustness

Project early and late free floats

$$EFF_{i} = \min_{(i,j)\in E} (ES_{j} - \delta_{ij}) - ES_{i}$$
$$LFF_{i} = LS_{i} - \max_{(j,i)\in E} (LS_{j} + \delta_{ji})$$

Schedule early and late free floats

$$EFF_{i}(S) = \min_{(i,j)\in E} (S_{j} - \delta_{ij}) - S_{i}$$
$$LFF_{i}(S) = S_{i} - \max_{(j,i)\in E} (S_{j} + \delta_{ji})$$

$$f(S) = \sum_{i \in V} w_i^f [EFF_i(S) + LFF_i(S)] = \sum_{i \in V} w_i^f [\min_{(i,j) \in E} (S_j - \delta_{ij}) - \max_{(j,i) \in E} (S_j + \delta_{ji})]$$

• Total weighted free float f(S) measure of schedule robustness

Including resource constraints: Feasible relations

- Break up minimum forbidden sets by precedence relationships (i, j) with $S_j S_i \ge p_i$
- Precedence relationships form asymmetric (precedence) relation ρ
- Relation polytope $\mathcal{S}_T(\rho) := \{ S \in \mathcal{S}_T \mid S_j S_i \ge p_i \text{ for all } (i, j) \in \rho \}$
- Relation network $N(\rho) = (V, E \cup \rho, \delta^{\rho})$ with $\delta_{ij}^{\rho} = p_i$ for $(i, j) \in \rho$ $D(\rho)$: Distance matrix of relation network $N(\rho)$
- Precedence relation ρ time-feasible: $S_T(\rho) \neq \emptyset$
- Time-feasible precedence relation ρ feasible: $S_T(\rho) \subseteq S$
- Induced strict order $\Theta(D(\rho)) := \{(i, j) \in V \times V \mid i \neq j, \ d_{ij}^{\rho} \ge p_i\}$

Theorem. Precedence relation ρ is feasible if and only if

- (i) relation network $N(\rho)$ does not contain cycle of positive length
- (ii) no antichain in strict order $\Theta(D(\rho))$ is forbidden

Example: Precedence relation $\rho = \{(2, 4), (3, 2)\}$

Relation network $N(\rho)$:

Distance matrix $D(\rho)$:

• Induced strict order $\Theta(D(\rho))$: Transitively reduced precedence graph

• \subseteq -maximal antichains: {0}, {1,2}, {1,3}, {4}, {5}

Optimization problem

 \bullet Precedence relations $(i,j)\in\rho$ influence total weighted free float

$$f(\rho, S) := \sum_{i \in V} w_i^f(\min_{(i,j) \in E \cup \rho} [S_j - \delta_{ij}^{\rho}] - \max_{(j,i) \in E \cup \rho} [S_j + \delta_{ji}^{\rho}])$$

• **Problem**: Determine feasible relation ρ and (feasible) baseline schedule $S \in S_T(\rho)$ with maximum total weighted free float $f(\rho, S)$

(P)
$$\begin{cases} \text{Maximize } f(\rho, S) \\ \text{subject to } \mathcal{S}_T(\rho) \subseteq \mathcal{S} \\ S \in \mathcal{S}_T(\rho) \end{cases}$$

- Subproblems:
 - \triangleright Temporal scheduling problem for given precedence relation ρ :

Maximize $\{f(S, \rho) \mid S \in \mathcal{S}_T(\rho)\}$

 \triangleright Feasibility problem for given precedence relation ρ with $S_T(\rho) \neq \emptyset$

$$\mathcal{S}_T(
ho) \stackrel{?}{\subseteq} \mathcal{S}$$

3 Solution method

3.1 Structural Issues

Properties of objective function and feasible region

- Function $f(\rho, \cdot)$ piecewise linear and concave in S
- Temporal scheduling problem can be transformed into linear program

$$(LP(\rho)) \begin{cases} Maximize \quad \sum_{i \in V} w_i^f (x_i^e + x_i^l) \\ \text{subject to} \quad S_j - x_i^e \ge \delta_{ij}^\rho \quad (i \in V, \ (i, j) \in E \cup \rho) \\ S_j + x_i^l \le -\delta_{ji}^\rho \quad (i \in V, \ (j, i) \in E \cup \rho) \\ S_j - S_i \ge \delta_{ij}^\rho \quad ((i, j) \in E \cup \rho) \\ S_0 = 0 \end{cases}$$

- Function $f(\cdot, S)$ nonincreasing in ρ
- $S_T(\rho)$ nonincreasing in ρ
- \bullet If (P) solvable, there exists optimal and \subseteq -minimal feasible relation ρ

Properties of time-feasible relation ρ and strict order $\theta = \Theta(D(\rho))$

- ρ feasible iff weight $w(U_k)$ of maximum-weight antichain U_k in θ with weights r_{ik} no greater than capacity R_k for all $k \in \mathcal{R}$
- Antichain in θ corresponds to stable set in (transitive) precedence graph $G(\theta)$
- Weight of maximum-weight stable set can be determined by computing value of minimum (0, n + 1)-flow in (transitively reduced) precedence graph $G(\theta)$ with lower node capacities r_{ik}
- Maximum-weight antichain U_k coincides with maximum (0, n + 1)-node-cut in $G(\theta)$

Example:

Minimum (0, 5)-flow and maximum (0, 5)-node-cut for $\rho = \{(2, 4), (3, 2)\}$

3.2 Branch-and-Bound

Enumeration scheme

initialize list of time-feasible relations $Q := \{\emptyset\}$ and lower bound $f^* := -\infty$;

repeat

delete some relation ρ from list Q;

determine maximum-float schedule S by solving temporal scheduling problem LP(ρ);

if $\Theta(D(\rho')) \not\subseteq \Theta(D(\rho))$ for all $\rho' \in Q$ and $f(\rho, S) > f^*$ then

for all $k \in \mathcal{R}$ do determine maximum-weight antichain U_k in $\Theta(D(\rho))$;

if $w(U_k) \leq R_k$ for all $k \in \mathcal{R}$ then put $\rho^* := \rho$, $S^* := S$, $f^* := f(\rho^*, S^*)$;

else

```
select some k \in \mathcal{R} with w(U_k) > R_k;
compute set \mathcal{B} of all minimal delaying alternatives for U_k;
for all B \in \mathcal{B} do
for all i \in U_k \setminus B do
set \rho' := \rho \cup (\{i\} \times B);
if \mathcal{S}_T(\rho') \neq \emptyset then add \rho' on list Q;
until Q = \emptyset;
if f^* > -\infty then return (\rho^*, S^*);
```


Example: Resource capacity R = 3

Iteration 1, root node 0: $\rho = \emptyset$


```
Iteration 2, node 1: \rho = \{(1, 4)\}
```


• $S = (0, 0, 4, 0, 2, 5), f(\rho, S) = 8$

•
$$U = \{1, 2, 4\}, w(U) = 5 > R$$

• $\mathcal{B} = \{\{1,2\},\{4\}\}$

•
$$\rho'_1 = \{(1,4)\}, \ \rho'_2 = \{(2,4)\},\ \rho'_3 = \{(4,1), (4,2)\}$$

• $S = (0, 0, 3, 0, 4, 7), f(\rho, S) = 6$

•
$$U = \{2, 4\}, w(U) = 4 > R$$

•
$$\mathcal{B} = \{\{2\}, \{4\}\}$$

• $\rho'_{1,1} = \{(1,4), (2,4)\}, \ \rho'_{1,2} = \{(1,4), (4,2)\}$

Iteration 3, node 1.1: $\rho = \{(1,4), (2,4)\} \supseteq \rho' = \rho_2 = \{(2,4)\}$ Iteration 4, node 2: $\rho = \{(2,4)\}$

Iteration 5, node 2.1: $\rho = \{(2, 4), (1, 2)\}$

• $S = (0, 0, 2, 0, 4, 7), f(\rho, S) = 4$

•
$$U = \{1, 2, 3\}, w(U) = 4 > R$$

• $\mathcal{B} = \{\{1\}, \{2\}, \{3\}\}$

•
$$\rho'_{2,1} = \{(2,4), (1,2)\}, \ \rho'_{2,2} = \{(2,4), (3,2)\},\ \rho'_{2,3} = \{(2,4), (1,3)\}, \ \rho'_{2,4} = \{(2,4), (2,1)\},\ \rho'_{2,5} = \{(2,4), (2,3)\}, \ \rho'_{2,6} = \{(2,4), (3,1)\}$$

•
$$S = (0, 0, 3, 0, 4, 7), f(\rho, S) = 2$$

•
$$U = \{1, 3\}, w(U) = 3 = R$$

•
$$\rho^* := \rho, S^* := S, f^* := 2$$

• $S = (0, 0, 3, 0, 4, 7), f(\rho, S) = 3$ • $U = \{1, 3\}, w(U) = 3 = R$ • $\rho^* := \rho, S^* := S, f^* := 3$

Iteration 7: $Q = \emptyset$, **return** (ρ^*, S^*)

Conclusions

Summary

- Robust project scheduling: robust baseline schedule combined with scheduling policy for resolving resource conflicts during implementation
- Measure of robustness: total weighted free float of schedule
- Temporal scheduling problem: linear program
- Feasibility problem for relation: minimum-flow problem

Further research

- Implementation and testing
- Expansion to sequence-dependent changeover times and cumulative resources
- Application to process scheduling in the chemical industry
- Comparison to alternative approaches under different uncertainty scenarios (rescheduling, pure online scheduling)