1

A Comparison of Relaxation-Based Enumeration Schemes in Production Scheduling

Ch. Schwindt, Clausthal University of Technology supported by German Research Foundation DFG

$\underline{\mathsf{Outline}}$

- 1. Production scheduling problem
- 2. Generic scheduling model
- 3. Relaxation-based enumeration schemes
- 4. Avoiding redundancy
- 5. Performance analysis
- 6. Conclusions

1 Production scheduling problem

Operations

- Processing of production order (job) on machine
- Execution of chemical process (task) on processing unit
- Performance of activity in project using personnel and equipment

Temporal relationships

- Precedence constraints arising from process plans or recipes
- Release dates, deadlines
- Quarantine times, shelf life times

Resources

- Machinery, tools, manpower
- Storage facilities, intermediate products

Problem: Determine production schedule (assignment of start times to operations) complying with temporal relationships and resource constraints

2 Generic scheduling model

Resource-constrained scheduling model

- Operations *i* with processing times p_i , including production start i = 0
- \bullet Temporal relationships: minimum and maximum time lags d_{ij}^{min} and d_{ij}^{max} between start times of operations i,j
- Manpower, machinery: renewable resources k with capacities R_k and requirements r_{ik}
- Storage facilities, intermediate products: cumulative resources l with minimum and maximum inventory levels \underline{R}_l and \overline{R}_l and requirements r_{il} (r_{0l} : initial stock)

Reduction to generic model

Replace operations by events

- \bullet Split each operation $i \neq 0$ in start and completion events e = s(i) and f = c(i)
- \bullet Define time lags δ_{ef} between events e and f
 - \triangleright Fixed processing times p_i : $\delta_{ef} = p_i$, $\delta_{fe} = -p_i$ with e = s(i) and f = c(i)
 - \triangleright Minimum and maximum time lags d_{ij}^{min} and d_{ij}^{max} : $\delta_{ef}=d_{ij}^{min}$, $\delta_{fe}=-d_{ij}^{max}$ with e=s(i) and f=s(j)

Replace renewable resources by cumulative resources

• Renewable resources k: transform into cumulative resources l with $\underline{R}_l = 0$, $\overline{R}_l = R_k$, $r_{el} = r_{ik}$ for e = s(i) and $r_{fl} = -r_{ik}$ for f = c(i)

Eliminate maximum inventory levels, normalize minimum inventory levels

- Maximum inventory levels \overline{R}_l : introduce cumulative resources l' with inventory levels $\underline{R}_{l'} = -\overline{R}_l$, $\overline{R}_{l'} = \infty$ and requirements $r_{el'} = -r_{el}$, put $\overline{R}_l := \infty$
- Minimum inventory levels \underline{R}_l : put $r_{0l} := r_{0l} \underline{R}_l$, $\underline{R}_l := 0$

Generic scheduling model

Notation

V $E \subseteq V \times V$ Temporal relation f(S)S

Set of events *e*
$$\begin{split} N &= (V, E, \delta), \ D & & \text{Event-on-node network, distance matrix} \\ \mathcal{R} & & \text{Set of cumulative resources} \\ S_e, \ S &= (S_e)_{e \in V} & & \text{Occurrence time of event } e, \text{ schedule} \end{split}$$
 $r_l(S,t) = \sum_{e \in V: S_e \leq t} r_{el}$ Inventory level of resource l at time t given schedule SObjective function, e.g., $f(S) = \max_{e \in V} S_e$ Set of feasible schedules (feasible region)

Problem statement (Beck 2002, Neumann and S. 2002, Laborie 2003)

$$\begin{array}{ll} \text{Minimize} & f(S) \\ \text{subject to} & r_l(S,t) \ge 0 & (l \in \mathcal{R}, \ t \ge 0) \\ & S_f - S_e \ge \delta_{ef} & ((e,f) \in E) \\ & S_0 = 0, \ S_e \ge 0 & (e \in V) \end{array} \end{array} \right\}$$
(PSP)

3 Relaxation-based enumeration schemes

3.1 Basic scheme

Scheduling is (Bell and Park 1990) ...

- defining precedence relationships between events competing for same resources (Sequencing: hard)
- optimizing objective function subject to prescribed time lags and established precedence relationships (Temporal scheduling: tractable)

3.2 Resolving inventory shortages

- Schedule \hat{S} not resource-feasible: determine some time $t \ge 0$ with $r_l(\hat{S}, t) < 0$
- Determine set $A := \{e \in V \mid \hat{S}_e > t, \ r_{el} > 0\}$
- Compute minimal delaying alternatives $B: \subseteq$ -minimal set of events f with $\hat{S}_f \leq t$ and $r_l(\hat{S}, t) \sum_{f \in B} r_{fl} \geq 0$
- \bullet Add precedence relationships between sets A and B
 - ▷ Release dates: Fest et al. (1999)

$$S_f \ge \min_{e \in A} \hat{S}_e \qquad (f \in B)$$

 \triangleright Ordinary precedence constraints (branch over all $e \in A$): De Reyck, Herroelen (1998)

$$S_f \ge S_e \qquad (f \in B)$$

▷ Disjunctive precedence constraints: Neumann et al. (2001)

 $\min_{f \in B} S_f \ge \min_{e \in A} S_e$

4 Avoiding redundancy

4.1 Partitioning the feasible region

- \bullet Consider enumeration node u with search space ${\cal Q}$
- Compute minimal delaying alternatives B_1, \ldots, B_{ν}
- Define disjunctive precedence constraints $\min_{f \in B_{\mu}} S_f \geq \min_{e \in A} S_e$ belonging to sets

$$\mathcal{P}_{\mu} := \{ S \in \mathcal{Q} \mid \min_{f \in B_{\mu}} S_f \ge \min_{e \in A} S_e \}$$

• Enumerate child nodes $v_1,\ldots,v_{
u}$ with search spaces

$$\mathcal{Q}_{\mu}:=\mathcal{P}_{\mu}\setminus [\cup_{\lambda=1}^{\mu-1}\mathcal{P}_{\lambda}]$$

- $\cup_{\mu=1}^{\nu}(\mathcal{Q}_{\mu}\cap\mathcal{S})=\mathcal{Q}\cap\mathcal{S}$ and $\mathcal{Q}_{\lambda}\cap\mathcal{Q}_{\mu}=\emptyset$ for all $\lambda\neq\mu$
- Construction of sets \mathcal{Q}_{μ}

▷ Introduce disjunctive precedence constraint $\min_{f \in B_{\mu}} S_{f} \ge \min_{e \in A} S_{e}$ at node v_{μ} ▷ Introduce reverse constraint $\min_{e \in A} S_{e} \ge \min_{f \in B_{\mu}} S_{f} + 1$ at all nodes $v_{\mu+1}, \ldots, v_{\nu}$

4.2 Generalized subset dominance

- Release dates, ordinary precedence constraints: time lags δ_{ef}
- \bullet Associate a distance matrix $D(\boldsymbol{u})$ with each enumeration node \boldsymbol{u}
- Node u dominated by node v if $Q(u) \subseteq Q(v)$, i.e., $D(u) \ge D(v)$: Neumann, Zimmermann (2002)
- \bullet Perform depth-first search: enumeration nodes v

 \triangleright on active path from root r to active node u

 \triangleright bud nodes

- ▷ fully explored (all descendant nodes explored)
- \bullet Generalized subset dominance rule: fathom node \boldsymbol{u} if
 - \triangleright there exists bud node v with $D(v) \leq D(u)$: S. (1998)
 - ▷ there exists fully explored node v with distance one from active path and $D(v) \le D(u)$: De Reyck, Herroelen (1998)
- \bullet Each search space $\mathcal{Q}(u)$ explored only once

5 Performance analysis

Test bed

- Test set from literature with 90 instances comprising 50 events and 10 resources each
- Pentium IV PC with 1.8 GHz clock pulse and 512 MB RAM, time limit 10 seconds
- \bullet Branch-and-bound algorithms for makepan problem coded under MS Visual C++ 6.0

▷ RD(-SSD): release dates (+ subset dominance)

- ▷ OPC(-SSD): ordinary precedence constraints (+ subset dominance)
- > DPC(-PFR): disjunctive precedence constraints (+ partitioning of feasible region)

Computational results

	RD	RD-SSD	OPC	OPC-SSD	DPC	DPC-PFR
Number instances solved	71	79	74	79	87	90
Number of nodes explored	49045	15784	7383	1229	1110	204
CPU time total [ms]	2117	1304	2047	1622	413	254
CPU time first solution [ms]	2	1	140	81	8	59

12

6 Conclusions

Summary

- Production scheduling problem
- Generic scheduling model with cumulative resources
- Different relaxation-based enumeration schemes
 - \triangleright Release dates
 - Ordinary precedence constraints
 - Disjunctive precedence constraints
- Avoid redundancy by partitioning feasible region or subset dominance

S1 + U1 + S2 + U2

U3

U7

S17

Further research

- Integration of further constraints
 - Sequence-dependent changeover times
 - > Multi-purpose intermediate storages
- Application to process scheduling problems

Cumulative resources

- Carlier J, Rinnooy Kan AHG (1982) Scheduling subject to nonrenewable resource constraints. Operations Research Letters 1: 52–55
- Beck JC (2002) Heuristics for scheduling with inventory: Dynamic focus via constraint criticality. Journal of Scheduling 5: 43–69
- Neumann K, Schwindt C (2002) Project scheduling with inventory constraints. Mathematical Methods of Operations Research 56: 513–533
- Laborie P (2003) Algorithms for propagating resource constraints in Al planning and scheduling: Existing approaches and new results. Artificial Intelligence 143: 151–188

Enumeration schemes

- Bell CE, Park K (1990) Solving resource-constrained project scheduling problems by A* search. Naval Research Logistics 37: 61–84
- Fest A, Möhring RH, Stork F, Uetz M (1999) Resource-constrained project scheduling with time windows: A branching scheme based on dynamic release dates. Technical Report 596, Technical University of Berlin
- Franck B, Neumann K, Schwindt C (2001) Truncated branch-and-bound, schedule construction, and schedule-improvement procedures for resource-constrained project scheduling. OR Spektrum 23: 297-324

Redundancy avoidance

- De Reyck B, Herroelen WS (1998) A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research 111: 152–174
- Schwindt C (1998) Verfahren zur Lösung des ressourcenbeschränkten Projektdauerminimierungsproblems. Shaker, Aachen
- Neumann K, Zimmermann J (2002) Exact and truncated branch-and-bound procedures for resource-constrained project scheduling with discounted cash flows and general temporal constraints. Central European Journal of Operations Research 10: 357–380