
Institut für Wirtschaftswissenschaft

Technische Universität Clausthal

A priority-rule based method for

predictive-reactive batch production scheduling in

the process industries

Rafael Fink

Christoph Schwindt

Report PLC–3

TECHNICAL REPORT

Institut für Wirtschaftswissenschaft · TU Clausthal
Julius-Albert-Straße 2 · D–38678 Clausthal-Zellerfeld · Germany

Institut für Wirtschaftswissenschaft

Technische Universität Clausthal

A priority-rule based method for

predictive-reactive batch production scheduling in

the process industries

Rafael Fink

Christoph Schwindt

Report PLC–3

May 2007

All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopy, recording,
or any information storage and retrieval system, without permission in writing form
from the authors.

Abstract. In this paper we present a priority-rule based method for predictive-
reactive batch production scheduling in the process industries. In order to plan
the processing of production operations on a multi-purpose batch production plant,
we generate a predictive baseline production schedule. Given forecast values for the
durations of the operations and the availabilities of the processing units, the problem
consists in determining the start times of the operations such that the production
makespan is minimized. In general, an operation may be executed on alternative
processing units. Each operation transforms one or several input products into
one or several output products. Certain intermediates must be stocked in storage
facilities of limited capacity and chemically instable substances must be consumed
immediately. Moreover, a cleaning of sequence-dependent duration may become
necessary between the executions of different operations on the same processing
unit.

During the execution of the baseline schedule, the durations of the operations
may differ from their expected values. Furthermore, disruptions like unit break-
downs may occur. We show how to react on deviations from the predictive dura-
tions by updating the start and completion times of the operations and delaying the
unloading of processing units, if necessary. For other types of disturbances we have
to generate a new schedule, which is done in such a way that either the deviation
from the baseline schedule or the makespan of the new plan is minimized. We have
tested our method on a standard test set from literature.

Key words: Production scheduling, batch scheduling, predictive-reactive schedul-
ing

This research has been supported by the Deutsche Forschungsgemeinschaft (Grant
Schw 1178/1).

Contents

1 Introduction 1

2 Predictive priority-rule based method 3

3 Execution and reactive scheduling 6

4 Experimental performance analysis 8

5 Conclusions 10

1 Introduction

In the process industries, final products arise from chemical and physical transfor-
mation processes, which are called tasks. Each task is executed on a processing
unit and takes a certain processing time to transform the input materials into the
output products. Often, a task can be executed on different alternative processing
units. Moreover, a unit may be able to execute different tasks. Such a multi-purpose
processing unit generally requires a changeover of sequence-dependent duration be-
tween the execution of different tasks. The products occurring at the different stages
of the production processes can be classified into raw materials, intermediates, and
final products. In literature, those products are also referred to as states. In the
process industries, intermediates may need a quarantine time, which means that the
intermediate cannot be consumed immediately after its production. The opposite
case is possible as well: Products with a shelf-life time like perishable substances in
the chemical industry have to be consumed within a certain amount of time. In-
termediates with a shelf-life time of zero are referred to as zero-wait products. The
remaining products can be stored in storage facilities of limited capacity.

In batch production mode, which we consider in this paper, material flows are
discontinuous. Before starting the execution of a task, all input materials are loaded
into a processing unit according to certain input proportions. After the completion
of the task, which may produce several output products with different output pro-
portions, the transformed materials are unloaded. The bulk of materials which is
processed in one task is called a batch. The minimum and maximum filling levels of
the processing units give rise to minimum and maximum batch sizes. The duration
of a task is assumed to be independent of the batch size. Since batch sizes are
bounded, each task has to be executed several times in general. The execution of a
task with a given batch size is referred to as an operation. We assume operations
to be non interruptible.

Batch production processes can be described using the state-task network rep-
resentation proposed by Kondili et al. [11]. Figure 1 shows the state-task network
belonging to a case study presented by Kallrath [10], to which we will refer to in
Section 4.

The planning problem of batch production can be stated as follows. Given
primary requirements for final products, compute a feasible production schedule with
minimum makespan such that the batch sizes and the input and output proportions
of the tasks are within their given bounds, the quarantine and shelf-life times of
intermediates are observed, the processing units are executing at most one operation
at a time, necessary changeover times are taken into account, a sufficient amount of
input products is available at the start of each operation, and no capacity overflows
occur in the storage facilities.

In literature, there exist different solution methods for the above planning prob-
lem. A considerable amount of research has been devoted to monolithic planning ap-
proaches. In particular, a broad variety of MILP formulations have been developed
in the last decade. One can distinguish between discrete-time (see, e. g., Blömer
and Günther [2] or Kondili et al. [11]) and continuous-time models (see, e. g., Ier-

1

State s
(i,m,M)

Task t/u
(p,c,b,B)

task
unit
expected processing time
cleaning time (before
idle time and before
task with higher index)
minimum batch size
maximum batch size

t
u
p
c

b
B −

−

−
−
−
− state

initial stock
minimum stock
maximum stock

s
i
m
M −

−
−
−

− input/output proportion

(x=1, if not specified)

x

x

Unit 2

Unit 1

Unit 3

Unit 4

Unit 6−7Unit 5

Unit 8−9

(,0,)
State 0

(2,2,3,10)
Task 1/1

(10,0,30)
State 1

(4,4,5,20)
Task 2/2

(10,0,30)
State 2

(0,0,15)
State 3

(2,2,4,10)
Task 3/3

(10,0,30)
State 4

(4,4,4,10)
Task 4/4

(4,4,4,10)
Task 5/4

(4,4,4,10)
Task 6/4

(4,4,4,10)
Task 7/4

(0,0,10)
State 8

(0,0,10)
State 7

(0,0,10)
State 6

(0,0,0)
State 5

(6,6,4,10)
Task 8/5

(6,6,4,10)
Task 9/5

(4,4,3,7)
Task 10/6

(5,5,3,7)
Task 10/7

(5,5,3,7)
Task 11/6

(6,6,3,7)
Task 11/7

(6,6,3,7)
Task 12/6

(6,6,3,7)
Task 12/7

(0,0,10)
State 13

(0,0,0)
State 12

(0,0,10)
State 11

(0,0,0)
State 10

(0,0,0)
State 9

(4,2,4,12)
Task 13/8

(6,3,4,12)
Task 13/9

(0,0,)
State 14

(4,2,4,12)
Task 14/8

(0,0,)
State 15

(6,3,4,12)
Task 14/9

(4,2,4,12)
Task 15/8

(0,0,)
State 16

(6,3,4,12)
Task 16/8

(0,0,)
State 17

(6,3,4,12)
Task 16/9

(6,3,4,12)
Task 17/8

(0,0,)
State 18

(6,3,4,12)
Task 17/9

0.69

0.5

0.5

x [0.2;0.7] 1−x

∋

8 8

8 8 8 8 8

0.31

Figure 1: State-task network for the Kallrath example

apetritou and Floudas [7] or Maravelias and Grossmann [12]). A comparison of both
model types can be found in the papers of Burkard and Hatzl [4] and Floudas and
Lin [6]. Since most problems from practice cannot be solved to optimality in a rea-
sonable amount of time, several heuristic approaches have been proposed to reduce
the number of binary variables of the MILPs (see, e. g., Blömer and Günther [3]).

Neumann et al. [14] have developed a hierarchical planning approach decompos-
ing the problem into a batching and a batch scheduling problem. A solution to
the batching problem provides the set of operations to be scheduled in the batch
scheduling problem. More precisely, the batching problem consists in determining
the numbers and sizes of the batches and fixing the flexible input and output pro-

2

portions of the tasks. The batching problem can be formulated as an MINLP of
moderate size. Once the batching problem has been solved, we assign a processing
unit and a start time to each resulting operation at the batch scheduling level. Neu-
mann et al. [14] have proposed a truncated branch-and-bound algorithm for solving
the batch scheduling problem. An alternative heuristic procedure is due to Schwindt
and Trautmann [17], who have developed a two-phase priority-rule based method.
The latter algorithm has served us as a starting point for our research and as a
benchmark for the experimental performance analysis.

The remainder of the paper is organized as follows. In Section 2, we describe
a new single-phase priority-rule based method for constructing baseline schedules.
The baseline schedule provides a basis for establishing temporal commitments like
delivery dates of raw materials or customer-ordered final products. Section 3 ad-
dresses the case of uncertainty, when during the implementation of the predictive
schedule different kinds of disruptions may occur. We explain how we can react on
deviations between nominal and actual durations of the operations and on machine
breakdowns. In Section 4 we present numerical results. Then we give some final
remarks.

2 Predictive priority-rule based method

As mentioned above we follow the decomposition approach proposed by Neumann
et al. [14]. In this paper we only focus on the batch scheduling problem, i. e., we are
given a set of operations, denoted by O, which must be scheduled. The formulation
of the batching problem by Neumann et al. [14] ensures that operations of the same
task always have the same batch size and the same input and output proportions.
For computing the predictive baseline schedule, we assume that the durations of
the operations equal the expected values of the respective task execution times. We
illustrate our approach using the small example depicted in Figure 2.

Unit 1

Unit 3Unit 2

(,0,)
State 1

8 8 (2,0,5,5)
Task 1/1

(0,0,3)
State 2

(2,0,2,2)
Task 2/2

(0,0,0)
State 3

(2,0,2,2)
Task 4/3

(4,0,4,4)
Task 3/3

(0,0,)
State 4

8

(0,0,)
State 5

8

Figure 2: State-task network of the example

Assume that we have primary requirements of eight units for state 4 and of two
units for state 5. Since all batch sizes are fixed, the solution to the batching problem
is trivial. We obtain two operations of task 1, one operation of task 2, two operations
of task 3, and one operation of task 4.

The first step of our algorithm consists in generating an event-on-node-network
that corresponds to a type of networks introduced by Elmaghraby and Kamburow-
ski [5]. Event nodes are connected by arcs representing temporal constraints between
the events. A nonnegative weight wij ≥ 0 of an arc (i, j) from node i to node j

3

corresponds to a minimum time lag of wij time units between the occurrence of
the event belonging to node i and the occurrence of the event belonging to node j.
A negative weight wji < 0 of an arc (j, i) from node j to node i means that the
event belonging to node j must occur −wji time units after the event belonging to
node i at the latest.

The network is generated as follows. We introduce two nodes A and Ω for the
production start and the production end and two nodes α and ω for each operation
representing the operation’s start and end. Operations belonging to the same task
are arranged sequentially by arcs with weight 0. We use completion-to-start rela-
tionships if the corresponding task can be executed on only one unit. Otherwise,
the arcs link the start nodes of the operations. Next, initial node A is linked with
the start events α of the first operations of each task by an arc with weight 0. Sym-
metrically, the completion events ω of the last operations of each task are linked
with terminal node Ω by an arc with weight 0. A fixed duration p of an operation
is translated into a forward arc with weight p from α to ω and a backward arc with
weight −p from ω to α. For operations that can be executed on alternative process-
ing units, the forward arc is weighted by the minimum and the backward arc by the
negative maximum of the processing times on the different units.

Having generated the skeleton of the network, we may add further arcs in the
following way. If an intermediate is produced by exactly one task (case of linear or
divergent material flows), we can identify precedence relationships which are neces-
sary for the timely availability of input materials. To this end, we separately consider
each task consuming the intermediate. Starting with the first operation of this task,
we calculate how many operations of the producing task must be completed before a
sufficient amount of the intermediate is available to start the consuming operation.
We then add an arc with weight zero from the end of the last required producing
operation to the start of the consuming operation. Taking into account a possi-
ble residual stock of the intermediate, we proceed analogously with the remaining
operations of the consuming task. If an intermediate is consumed by exactly one
task (case of linear or convergent material flows), we can add arcs to avoid capacity
overflows in a similar way. For our example we obtain the event-on-node-network
depicted in Figure 3.

0

0

0

0

4

− 4

2

− 2

2

− 2

2

− 2

0

0

0

4

− 4

2

− 2

0

0

0

0

Α Ω

00

00

ω3
1 α 3

2 ω3
2

ω1
2α 1

2ω1
1α 1

1

α 2
1 ω2

1

ω4
1α 4

1

α 3
1

t
n

−
−

task
operation number

nω t
nα t

Figure 3: Event-on-node network for the example

4

Next, we determine the strong components of the network. Since every node of
a strong component has a temporal relationship with each other node of the same
strong component, in our method all operations belonging to a strong component
are scheduled jointly. For our small example we obtain the strong components {A},
{α1

1, ω
1
1}, {α1

2, ω
1
2}, {α3

1, ω
3
1}, {α3

2, ω
3
2}, {α2

1, ω
2
1, α

4
1, ω

4
1}, and {Ω}.

The basic idea of the scheduling method is very simple. In each iteration we
schedule one operation, the operations of a strong component being scheduled con-
secutively one after another. The start of each operation is scheduled at the earliest
time for which the temporal constraints of the event-on-node-network are satisfied
and a sufficient amount of input materials is available. The operations of a strong
component are eligible to be scheduled if (i), all of those operations’ predecessors in
the event-on-node network outside the strong component have already been sched-
uled, (ii), there is enough input material available to process all operations of the
strong component, and (iii), there is no other strong component for which some but
not all operations have been scheduled. Condition (iii) ensures that all operations
of a strong component are jointly added to the schedule in consecutive iterations.

So far we have not taken the limited capacity of the storage facilities into account.
We consider the storage-capacity constraints via the concept of capacity-driven latest
start times. If in some iteration of our method we have generated a capacity overflow
in a storage facility at a time t, we temporary force eligible operations consuming the
product stocked in this facility to start at time t at the latest. The capacity-driven
latest start times are maintained until the capacity overflow has been removed. As
a consequence it may happen that an eligible operation can no longer be scheduled
because the capacity-driven latest start time is smaller than the earliest feasible
start time. If no eligible operation can be scheduled, we perform an unscheduling
step in the following way. We determine the origin of the capacity conflict, i. e., the
operation i already scheduled that produced the material which cannot be stocked.
Moreover, we select one of the eligible operations, say, operation j. For operation i
causing the conflict we increase the earliest completion time to the earliest feasible
start time t of operation j. This is done by introducing an arc from node A to the
end node of i with weight t in the event-on-node network. If the conflict-causing
operations i and j belong to the same strong component, we remove all operations
belonging to this strong component from the schedule and resume the scheduling
method. Otherwise, we restart the scheduling procedure from scratch. In both
cases we apply the method to the expanded network containing the new arc. The
unscheduling step may generate unnecessary idle times, which can easily be removed
in a postprocessing step.

Algorithm 1 summarizes the priority-rule based method. Note that when updat-
ing the latest start times we not only have to take into account the capacity-driven
latest start times but also the latest start times arising from precedence relation-
ships between the operation j scheduled and the operations j ∈ O \ C belonging
to the same strong component. The algorithm can be implemented as a random-
ized multi-start procedure by stochastically disturbing the priority values of the
operations.

For our example the algorithm yields the schedule shown in Figure 4, where we

5

Algorithm 1 Priority-rule based method

initialize C := ∅ (∗ set of scheduled operations ∗);
while C 6= O do

determine set E of eligible operations i ∈ O \ C;
for all i ∈ E do

compute priority value v(i);
repeat

delete operation j with highest priority value v(j) from set E ;
if j can be started no later than its latest start time then

schedule operation j at its earliest feasible start time;
put C := C ∪ {j};
update latest start times of operations i ∈ O \ C;

until an operation j has been scheduled or E = ∅;
if E = ∅ then

perform an unscheduling step;

assume that the operations of task 3 have a higher priority than the operations of
tasks 2 and 4. The second operation of task 1 has been unscheduled and delayed.
A second unscheduling step has been performed for the operation belonging to task
2 while trying to schedule the stong component containing the operations of tasks
2 and 4.

Figure 4: Predictive schedule

3 Execution and reactive scheduling

Although production in the process industries is typically subject to considerable
uncertainty, the literature on production planning in the process industries primar-
ily deals with deterministic scenarios. Schilling and Pantelides [15] have proposed a
reactive batch scheduling procedure based on a discrete-time MILP. More recent ap-
proaches relying on continuous-time MILP’s can be found in Mendez and Cerdá [13]
and in Janak and Floudas [9]. In machine and project scheduling, a big deal of ef-
fort has been devoted to the case of uncertain durations. In principle, there are two
different ways to cope with uncertainty: the proactive and the reactive approach.
Proactive methods anticipate uncertainty, and the knowledge about uncertainty is
included into the plan. Examples of proactive approaches are stochastic and robust

6

optimization (see, e. g., Scholl [16]). Reactive procedures serve to react on unfore-
seen events like deviations from predictive durations or machine breakdowns during
the implementation of a baseline plan. Overviews over the different approaches are
given in Aytug et al. [1], Herroelen and Leus [8], and Vieira et al. [18].

In this paper we focus on the reactive approach. At first, we explain how to
execute the predictive schedule in face of uncertain durations of the operations.
Then, we present a reactive scheduling method which can be used in case of unit
breakdowns.

When executing the baseline schedule, the durations of the operations will almost
never coincide with the predictive processing times and hence, the actual start and
completion times of the operations will generally differ from the baseline schedule.
That is why the baseline schedule can no longer be viewed as a binding specification
of the operations’ execution time intervals. Rather, we extract precedence relation-
ships from the baseline schedule which guarantee the feasibility of the schedule and
which have to be maintained during the execution. In more detail, we fix the se-
quence of the operations on the units, and for every product we link the producing
and the consuming operations by temporal constraints according to a FIFO strat-
egy in a way ensuring that shortages and capacity overflows are avoided. We then
schedule all operations as early as possible with respect to the temporal constraints.
When operations are finished, we either unload the batch and proceed with the
next operations or we leave the produced material in the unit as long as it cannot
be stocked or consumed by another operation. By using units as material buffers,
this approach ensures that every feasible baseline schedule can actually be executed.
The implementation of the schedule from Figure 4 with realized durations is shown
in Figure 5. The black rectangles indicate the time during which the finished batch
cannot be unloaded.

Figure 5: Implemented schedule

Other types of schedule disruptions, like the breakdown of a unit, cannot be
handled by a simple adjustment of start and completion times. If a unit fails,
we assume that the material, which has been in process, is lost. Consequently,
we have to do some rework. This means that we must compute a new schedule,
which can be done in the following way. We virtually interrupt the execution of
the current schedule by starting a repair job on the broken unit. Then, we take
the current inventory levels of the products including the output of the currently
running operations as initial stocks for a new planning problem.

The new problem is treated in the same way as the original problem. At first,
we solve the new batching problem for the residual primary requirements and sub-

7

sequently schedule the resulting operations with the priority-rule based method
sketched in Section 2. With respect to the batch scheduling problem, we distin-
guish between two different types of reactive strategies. Either we try to minimize
the makespan again, or we strive at constructing a schedule which resembles the
old predictive schedule to the largest extent possible and hence maximizes plan-
ning stability. A simple way to pursue the latter objective is list scheduling. In
our context list scheduling means that we generate a task list of the operations not
yet started from the previous predictive schedule according to nondecreasing start
times. When computing the revised schedule with the priority-rule based method,
we always schedule an operation belonging to the first eligible task in the list. If
running operations produce material that exceeds the capacity of a storage facility,
we sometimes may not be able to generate a new feasible schedule without disposing
the amount of material that cannot be stored. More precisely, this case occurs when
during the generation of the revised schedule we perform an unscheduling step in
which we try to delay the completion of an operation that is already in progress.
Finally, we note that an analogous procedure can be used for other disruption types
like unexpected yield losses.

We return to our small example of Figure 5 and suppose that unit 1 breaks
down after 2.89 units of time, i. e., while executing the second operation of task 1.
Independently of the priority values, the schedules generated with the both reactive
strategies do not differ. The repaired schedule, which is depicted in Figure 6, then
serves as the new baseline schedule.

Figure 6: Reactive schedule

4 Experimental performance analysis

We have tested our algorithm on a set of instances that are based on Kallrath’s
case study illustrated in Figure 1. The 22 instances, which differ in the primary
requirements for the five final products (see Table 1), have been created by Blömer
and Günther [3]. We compare the results for our predictive method to the results
obtained by Schwindt and Trautmann [17], who stopped their algorithm after 60
seconds. Using a faster PC (2.08 GHz), we have set a time limit of 23 seconds for
our randomized multi-start procedure. Table 2 lists the best makespans obtained.
CST

max is the best solution found by Schwindt and Trautmann, and CFS
max stands for

the best makespan found with our method. The underlying solutions to the batching
problems were the same for both algorithms. Table 2 indicates that the new method
is able to achieve significantly better results, especially for the large instances.

8

Inst. 1 2 3 4 5 6 7 8 9 10 11

PR14 20 20 20 20 20 20 0 0 0 0 10
PR15 20 20 20 0 0 0 20 20 20 0 10
PR16 20 0 0 20 20 0 20 20 0 20 20
PR17 0 20 0 20 0 20 20 0 20 20 20
PR18 0 0 20 0 20 20 0 20 20 20 30

Inst. 12 13 14 15 16 17 18 19 20 21 22

PR14 30 10 18 15 45 15 27 20 60 20 36
PR15 20 20 18 15 30 30 27 20 40 40 36
PR16 20 30 18 30 30 45 27 40 40 60 36
PR17 10 20 18 30 15 30 27 40 20 40 36
PR18 10 10 18 45 15 15 27 60 20 20 36

Table 1: 22 instances of the Kallrath case study

Inst. 1 2 3 4 5 6 7 8 9 10 11

CST
max 39 47 48 42 41 49 44 43 49 54 64

CF
max 36 42 42 39 39 47 40 40 46 49 56

Inst. 12 13 14 15 16 17 18 19 20 21 22

CST
max 48 57 61 45 80 92 90 159 97 124 114

CF
max 45 50 53 80 66 72 70 98 78 82 83

Table 2: Results for 22 instances of the Kallrath case study: Predictive case

Inst. 1 2 3 4 5 6 7 8 9 10 11

π 0.063 0.069 0.103 0.093 0.072 0.045 0.063 0.041 0.073 0.045 0.086

Inst. 12 13 14 15 16 17 18 19 20 21 22

π 0.082 0.044 0.087 0.044 0.036 0.050 0.045 0.038 0.052 0.037 0.059

Table 3: Results for the Kallrath case study: Reactive case for uncertain durations
only

For the procedure coping with uncertain durations, we have assumed the dura-
tions of the operations to be distributed according to a right-skewed beta-distribution
and have performed an ex-post analysis. In this type of analysis, we compare the
implemented schedule with the ex-post schedule that we would have obtained if we
had known the realized durations in advance. To evaluate the results we have cal-
culated the price of incomplete information π, i. e., the relative deviation between
the realized makespan and the ex-post benchmark. Table 3 shows the mean price
of incomplete information obtained in 20 independent passes for each instance.

9

Inst. 1 2 3 4 5 6 7 8 9 10 11

πMS 0.157 0.155 0.144 0.128 0.112 0.162 0.176 0.118 0.170 0.115 0.164

πST 0.173 0.167 0.151 0.156 0.122 0.174 0.194 0.132 0.200 0.124 0.171

σMS 0.572 0.590 0.655 0.592 0.579 0.682 0.582 0.598 0.663 0.670 0.625

σST 0.655 0.693 0.713 0.680 0.687 0.787 0.698 0.675 0.753 0.729 0.782

Inst. 12 13 14 15 16 17 18 19 20 21 22

πMS 0.114 0.125 0.139 0.112 0.105 0.107 0.103 0.117 0.106 0.112 0.110

πST 0.130 0.167 0.180 0.138 0.131 0.153 0.123 0.164 0.129 0.179 0.144

σMS 0.611 0.637 0.649 0.607 0.681 0.601 0.663 0.691 0.617 0.633 0.641

σST 0.768 0.736 0.785 0.798 0.817 0.770 0.801 0.822 0.817 0.789 0.811

Table 4: Results for the Kallrath case study: Reactive case for unit breakdowns and
uncertain durations

For the case of unit breakdowns we have assumed exponentially distributed times
between failure. Again, we have evaluated the procedure based on an ex-post analy-
sis, where breakdown and repair times are given. To measure the similarity between
the original baseline and the actually executed schedule we use schedule-induced
reflexive linear orders. Let Pu(S) denote the reflexive linear order that is induced
by the sequence of operations on unit u within schedule S. The similarity σ of two
schedules S1 and S2 is then defined to be the ratio of the number of precedence
relationships that are induced by both schedules to the mean number of precedence
relationships induced by schedule S1 and S2, i. e.,

σ =

∑
u | Pu(S1) ∩ Pu(S2) |

1
2
(
∑

u | Pu(S1) | + ∑
u | Pu(S2) |)

The results are reported in Table 4. Depending on the reactive strategy used,
the price of incomplete information π and the similarity σ are labeled with MS for
the makespan strategy and ST for the stability strategy. Again, the results refer
to 20 independent passes for each instance. Compared to the case where we have
exclusively considered uncertain durations, π is now generally much greater. The
reason for this is that often the amount of rework becomes considerably large.

5 Conclusions

In this paper we have presented a new priority-rule based method for predictive-
reactive batch production scheduling in the process industries. The predictive
method is based on an event-on-node network and its strong components. Since
the operations of a strong component have a temporal relationship to each other
they are scheduled jointly one after another. When scheduling the operations we
strictly avoid shortages in the storage facilities. Capacity overflows that may have
been generated are resolved via the concept of capacity-driven latest start times.

10

When implementing the baseline schedule the processing times of the operations
may differ from their predictive values. We have shown how to react on these
deviations by adjusting the start and completion times of the operations. Moreover,
we have explained how to generate a revised schedule by generating and solving a
new planning problem when units break down.

The results and the very short CPU times (less than one minute) indicate that
the proposed method offers a promising approach to dealing with uncertainty in
batch production scheduling.

The proposed procedure can be adapted to other types of disruptions like unex-
pected yield losses. Another interesting extension of the method would be a robust
planning of the set operations to be scheduled with respect to the possible material
deficits caused by unit breakdowns or yield losses. Such a set of operations can be
obtained, for example, by formulating the batching problem as a chance-constrained
program.

References

[1] Aytug H, Lawley MA, McKay K, Mohan S, Uzsoy R (2005) Executing produc-
tion schedules in the face of uncertainties: A review and some future directions.
European Journal of Operational Research 161:86–110

[2] Blömer F, Günther HO (1998) Scheduling of a multi-product batchprocess in
the chemical industry. Computers in Industry 36:245–259

[3] Blömer F, Günther HO (2000) LP-based heuristics for scheduling chemical
batch plants. International Journal of Production Research 38:1029–1051

[4] Burkard R, Hatzl J (2005) Review, extensions and computational comparison of
MILP formulations for scheduling of batch processes. Computers and Chemical
Engineering 29:1752–1769

[5] Elmaghraby SE, Kamburowski J (1992) The analysis of activity networks under
generalized precedence relations (GPRs). Management Science 38:1245–1263

[6] Floudas C, Lin X (2004) Continuous-time versus discrete-time approaches for
scheduling of chemical processes: A review. Computers and Chemical Engineer-
ing 28:2109–2129

[7] Ierapetritou M, Floudas C (1998) Effective continuous-time formulation for
short-term scheduling: 1. Multipurpose batch processes. Industrial and Engi-
neering Chemistry Research 37:4241–4359

[8] Herroelen W, Leus R (2005) Project scheduling under uncertainty: Survey and
research potentials. European Journal of Operational Research 165:289–306

[9] Janak S, Floudas C, Kallrath J, Vormbrock N (2006) Production Scheduling
of a Large-Scale Industrial Batch Plant. II. Reactive Scheduling. Industrial
Engineering Chemistry Research 45:8253–8269

11

[10] Kallrath J (2002) Planning and scheduling in the process industry. OR Spec-
trum 24:219–250

[11] Kondili E, Pantelides CC, Sargent RWH (1993) A general algorithm for short-
term scheduling of batch operations: I. MILP formulation. Computers and
Chemical Engineering 17:211–227

[12] Maravelias C, Grossmann I (2003) New general continuous-time state-task net-
work formulation for short-term scheduling of multipurpose batch plants. In-
dustrial and Engineering Chemistry Research 42:3056–3074

[13] Mendez C, Cerdá J (2004) An MILP framework for batch reactive scheduling
with limited discrete resources. Computers and Chemical Engineering 28:1059–
1068

[14] Neumann K, Schwindt C, Trautmann N (2002) Advanced production scheduling
for batch plants in process industries. OR Spectrum 24:251–279

[15] Schilling G, Pantelides CC (1997) General algorithms for reactive rescheduling
of multipurpose plants. Working paper, Imperial College of Science, Technology
and Medicine, London

[16] Scholl A (2001) Robuste Planung und Optimierung. Physica, Heidelberg

[17] Schwindt C, Trautmann N (2004) A priority-rule based method for batch pro-
duction scheduling in the process industries. In: Ahr D, Fahrion R, Oswarld
M, Reinelt G (eds.) Operations Research Proceedings 2003, Springer, Berlin,
111–118

[18] Vieira G, Herrmann JW, Lin E (2003) Rescheduling manufacturing systems: A
framework of strategies, policies, and methods. Journal of Scheduling 6:39–62

12

