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1 Introduction

In the Resource–Constrained Project Scheduling Problem with minimal and maximal
time lags (RCPSP/max), both minimal and maximal time lags between the start of suc-
cessive activities have to be observed. Minimal time lags may differ from the respective
activity durations. Throughout its duration, each activity takes up a constant amount of
scarce renewable resources. A constant amount of each resource is assumed to be avail-
able. The objective is to schedule activities subject to time and resource constraints such
that the project duration is minimized. Activities and time constraints are represented
by an activity–on–node network in which the introduction of maximal time lags gen-
erates strong components (cycle structures). Although maximal time lags are essential
for modelling important practical applications (deadlines, overlapping operations, time–
varying resource requirements of activities and time–varying resource availabilities, cf.
Neumann & Schwindt 1995), little attention has been given to RCPSP/max thus far.
The only exact algorithm for RCPSP/max is the branch–and–bound procedure offered
by Bartusch et al. (1988). Brinkmann & Neumann (1995) propose two different heuristic
approaches for RCPSP/max, both being based on truncated branch–and–bound algo-
rithms for RCPSP. The direct method processes activities successively. The contraction
method first constructs a feasible subschedule for each cycle structure in the underlying
project network separately. After that, the cycle structures are replaced by single nodes
corresponding to the execution of all activities of the respective cycle structure (contrac-
tion of cycle structures). The resulting instance of RCPSP then can be approximately
solved by truncated versions of branch–and–bound algorithms for RCPSP (scheduling
of the acyclic contracted network). Computational experience has shown that the ap-
proach of the contraction method clearly outperforms the direct method. In particular,
the contraction method finds a feasible schedule markedly more often than the direct
method. Since an instance of RCPSP/max is feasible if and only if there is a feasible
subschedule for each cycle structure, the bottom–up approach of the contraction method
which emphasizes on scheduling individual cycle structures seems to be well–suited to
solve hard problem instances.

In the following, we propose a new contraction method for RCPSP/max based on
(a truncated version of) the branch–and–bound algorithm provided by Demeulemeester
& Herroelen (1992) which currently has to be considered as the most advanced exact
method for RCPSP. In contrast to the heuristics of Brinkmann & Neumann (1995), in



our contraction method the resource requirements of a contracted cycle structure are
not supposed to be constant in time. We introduce additional decision points based on
the resource requirement profiles which we have obtained by the separate scheduling
of cycle structures. Furthermore, in the course of scheduling the contracted network
the subschedules which have been constructed for the cycle structures are appropriately
stretched by right–shifting activities whose resource requirements would prevent the
execution of the subschedule at the current decision point. During the scheduling of
the cycle structures and of the contracted network good lower bounds on the minimum
project duration are determined using a dualization recently introduced by Mingozzi et
al. (1994).

2 Scheduling cycle structures

The scheduling of each cycle structure represents a problem of type RCPSP/max for
which we have adapted a truncated version of the branch–and–bound method of De-
meulemeester and Herroelen (DH). The DH procedure is based on the extension of
partial schedules corresponding to the nodes of the search tree. Resource conflicts are
solved by delaying activities introducing additional precedence constraints. The set of
minimal delaying alternatives implies the branching into new nodes. Two efficient domi-
nance rules are used to avoid the generation of dominated nodes. We sketch two essential
modifications of the DH procedure which we made for the scheduling of cycle structures:
the computation of decision points t and the fathoming of nodes in the search tree.

Decision points
Let St be the set of activities in progress at time t in the partial schedule PSt under
consideration. With STi we denote the start time of activity i ∈ St in PSt. The non–
preemptable duration of activity i is given by Di. S(i) stands for the set of activities j
for which a minimal time lag between the starts of activities i and j has to be observed.
Since generally, the minimal time lags Tmin

ij between the starts of activities i and j do
not correspond to duration Di of activity i the computation of the next decision point
t after the current decision point t′ has to be adjusted as follows:

t := min

{

min
i∈St′

(STi +Di), min
i∈St′ ,j∈S(i)

(STi + Tmin
ij )

}

.

The next activity cannot be scheduled until the first activity i in progress at time t′ has
been finished or an additional activity j becomes eligible.

Fathoming of nodes
In the DH algorithm, nodes p of the search tree are fathomed if the corresponding lower
bound LB(p) is greater than or equal to the current upper bound UB or if the partial
schedule belonging to node p is dominated by other partial schedules according to the
left–shift dominance rule or the cutset dominance rule. If we have to cope with maximal
time lags, the search tree additionally can be pruned every time a lower bound on the
time lag between the start of a scheduled activity i and an unscheduled activity j exceeds
the corresponding maximal time lag Tmax

ij .



3 Scheduling the contracted network

Let C be the set of cycle structures C of the project network N . V (C) represents the set
of all activities belonging to cycle structure C. With nC we denote the cardinal number
of C ∈ C. Once feasible subschedules SC have been determined for all cycle structures
C ∈ C, the contracted network NC is obtained by shrinking cycle structures C to single
nodes c (contraction nodes) corresponding to the execution of SC . Let V C be the set
of contraction nodes c which correspond to cycle structures C ∈ C. For an appropriate
linking of nodes c ∈ V C in NC we refer to Brinkmann & Neumann (1995). As for the
scheduling of cycle structures we briefly sketch the adjustments of the DH procedure
which are necessary for the scheduling of the contracted network NC .

Decision points

Let STC
i be the start time of activity i in subschedule SC . Then, VC(τ) := {i ∈ V (C)|

τ −Di < STC
i ≤ τ} represents the set of activities belonging to cycle structure C which

are in progress in SC at time τ . Brinkmann & Neumann (1995) calculate durationsDc :=
maxi∈V (C)(ST

C
i +Di) and resource requirements rcκ := maxτ=0,...,Dc

(
∑

i∈VC(τ) riκ) for

each node c ∈ V C . Hence, resource requirements of contracted cycle structures are set
to be constant in time, and the contracted network can be scheduled by any algorithm
for RCPSP. This assumption, however, may prevent the scheduling of an eligible node
c ∈ V C although the remaining resource availabilities would have allowed the processing
of subschedule SC . In order to avoid schedules which are not maximal w.r.t. the resource
constraints we modify the computation of the next decision point t at time t′ as follows:
Let FTC

i = STC
i +Di be the finish time of activity i w.r.t. subschedule SC . Then,

t1 := min

{

min
i∈St′\V

C

(STi +Di), min
c∈St′∩V C

(

STc + min
i∈V (C)

{FTC
i |STc + FTC

i ≥ t′}

)}

represents the first time after t′ for which an activity i in progress at time t′ is finished
(including activities of cycle structures C whose contraction node c has been scheduled).
With

t2 := min
i∈S

t′
,j∈S(i)

(STi + Tmin
ij )

we denote the first time after t′ for which a node j of the contracted network NC becomes
eligible. Then, we set the next decision point t to be t := min{t1, t2}.

Stretching of cycle structures

Let c ∈ V C be an unscheduled contraction node eligible at time t. Since the resource
requirements rcκ(τ) :=

∑

i∈VC(τ) riκ of c at time τ depend on the start times STC
i

of activities i ∈ V (C), it may be favourable to delay the processing of some activity
j ∈ V (C) if rcκ(ST

C
j ) exceeds the remaining availability of resource κ at time t+ STC

j .
The problem of right–shifting activities i ∈ V (C) such that the completion time of c
is minimized, the sequence of activities given by schedule SC remains unchanged, and
all maximal time lags Tmax

ij are met, can be approximately solved by a label–correcting
algorithm.



4 The contraction method

The outline of the contraction method is as follows:

Determine the set C of cycle structures in project network N.

FOR C ∈ C DO

Find a feasible subschedule SC = (STC
i1
, . . . , STC

inC

) for cycle

structure C.

END (* FOR *).

Construct contracted network NC.

Determine a schedule S = (STj1 , . . . , STjs) for contracted network NC.

Update subschedules SC if cycle structures C are stretched.

FOR C ∈ C DO

Let STi := STc + STC
i ∀i ∈ V (C).

END (* FOR *).
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