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Abstract

We consider the scheduling of projects subject to temporal and resource con-

straints such that a continuous convex objective function in the start times of

activities is minimized. Optimal solutions to this problem represent local mini-

mizers on polytopes belonging to inclusion–minimal feasible orders which reflect

precedence relationships between activities. Thus, a natural approach to the

problem is to enumerate appropriate orders for each of which a local minimizer of

the objective function on the corresponding polytope is determined by a descent

algorithm. We propose different neighborhoods on the set of orders which arise

from removing, replacing, or adding pairs in the respective covering relation. For

the resource–constrained weighted earliness–tardiness problem, a corresponding

tabu search procedure has been implemented which uses a primal and a dual

first–order descent algorithm for the computation of stationary points.

1 Preliminaries

Let N = 〈V,E; δ〉 be an activity–on–node project network with set of nodes V , set of
arcs E, and corresponding arc weights δ. By R we denote the set of resources required
for the execution of the project. The start times Si of activities i ∈ V have to be
determined such that a continuous convex objective function f of schedule S = (Si)i∈V
is minimized, the temporal constraints Sj ≥ Si+δij belonging to arcs 〈i, j〉 ∈ E are met,
the project is started at time zero and completed by a deadline d, and the requirements
rk(S, t) of resources k ∈ R do not exceed the corresponding resource capacities Rk at
any point in time t. This problem, designated as PS|temp, d|f and m, 1|gpr, δn|nonreg
in the triple classifications devised by Brucker et al. (1999) and Herroelen et al. (1998),
respectively, can be stated as follows:











































Minimize f(S) (1.1)

subject to Sj − Si ≥ δij (〈i, j〉 ∈ E) (1.2)

Si ≥ 0 (i ∈ V ) (1.3)

S0 = 0, Sn+1 ≤ d (1.4)

rk(S, t) ≤ Rk (k ∈ R, t ≥ 0) (1.5)

1



Let ST be the set of time–feasible schedules observing the temporal constraints (1.2),
(1.3), and (1.4). The feasible region S is the set of time–feasible schedules comply-
ing with the resource constraints (1.5). Schedules S ∈ S are referred to as feasible
schedules. Optimal schedules are feasible schedules minimizing f .

Let O be a strict order in set V . By S(O) we denote the corresponding order polytope
(cf. Neumann, 2000). S(O) represents the set of all time–feasible schedules meeting
the precedence constraints Sj ≥ Si+pi for all (i, j) ∈ O, where pi denotes the duration
of activity i. O is called feasible if ∅ 6= S(O) ⊆ S.

The feasible region S corresponds to the union of polytopes S(O) belonging to feasible
orders. For S 6= ∅, there is always an inclusion–minimal feasible order O such that all
local minimizers of f on S(O) represent optimal schedules. The computation of these
local minimizers can be performed by descent algorithms. In Section 2 we propose
three different neighborhoods generating (covering relations of) appropriate orders O.

2 Local Search

We represent orders O by corresponding covering relations ρ. The neighborhoods are
defined on the set of covering relations ρ of orders O which are given by binding
precedence constraints. Let S be a schedule minimizing f on some order polytope
S(O′). The corresponding relation ρ is then given as covering relation of the order
O ⊆ O′ which is induced by pairs (i, j) with Sj = Si + pi. Clearly, S minimizes f on
S(O) ⊇ S(O′) as well.

For relation ρ, let P (ρ) denote the problem of minimizing f on S(O). Relation ρ

can possibly be reduced as follows. We determine an optimal solution S ′ to problem
P (ρ \ {(i, j)}) for each pair (i, j) ∈ ρ in order of nonincreasing values of dual variables
uij of the steepest descent problem at S. If S ′ = S or if S ′ is feasible, we remove pair
(i, j) from relation ρ and set S to be S ′. ρ then defines a set of precedence constraints
which all are necessary for settling resource conflicts.

The first neighborhood can now be described as follows. First, we determine an optimal
solution S ′ to all problems P (ρ\{(i, j)}) with (i, j) ∈ ρ and define respective neighbors
ρ′ of ρ as the sets of pairs (v, w) with S ′

w − S ′
v = pv. For all schedules S ′ and, if S is

infeasible for S, we then determine the earliest point in time t at which the resource
constraints (1.5) are violated and the corresponding set A(S ′, t) or A(S, t), respectively,
of activities processed at time t. For all g, h ∈ A(S ′, t) with g 6= h and (g, h) 6= (i, j),
we consider P (ρ \ {(i, j)} ∪ {(g, h)}) and for all g, h ∈ A(S, t) with g 6= h, we consider
P (ρ ∪ {(g, h)}). If the problem is solvable, we determine an optimal solution S ′′, and
the corresponding neighbor ρ′′ of ρ is the set of pairs (v, w) with S ′′

w − S ′′
v = pv. The

maximum number of neighbors of ρ is of order |ρ|n2.

A second neighborhood, which may be used for diversification, arises from choosing
(g, h) to be (j, i). The maximum number of neighbors is then of order n2. By choosing
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(g, h) to be (i, h) or (g, j) for some activities h or g which are executed simultaneously
with activity i or j, respectively, we obtain a third neighborhood for intensification
with maximum cardinality of order max(|ρ|n, n2).

Generally, optimal solutions to problems P (ρ) do not represent feasible schedules. That
is why we measure the quality of schedules S by cost function

f c(S) = f(S) + λ
∑

k∈R

∫ d

0

max(0, rk(S, t)− Rk) dt

with λ > 0 which penalizes violations of the resource constraints (1.5).

Based on the presented neighborhoods we implemented a tabu search algorithm for the
weighted resource–constrained earliness–tardiness problem with objective function

f(S) =
∑

i∈V

(w−

i max(0, di − Si − pi) + w+

i max(0, Si + pi − di))

where w−

i , w
+

i , and di represent the earliness cost, the tardiness cost, and the due
date, respectively, of activity i (cf. Vanhoucke et al., 1999 for a recent branch–and–
bound algorithm for the case where δij = pi for all 〈i, j〉 ∈ E). For solving problems
P (ρ), we use a primal and a dual algorithm. The corresponding first–order steepest
descent problems can be solved in linear order time if the direction is normalized by
the supremum norm (cf. Schwindt, 1999). Computational experience indicates that
for this resource–constrained project scheduling problem, local search algorithms are
competitive with truncated versions of a branch–and–bound procedure described in
Schwindt (1999).
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