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Abstract

We consider the scheduling of a chemical multi-level production plant processing a given

set of operations. The production levels are decoupled by intermediate storage facilities

of finite capacity. For each operation the processing time, the requirements for process-

ing units and manpower, as well as the total quantities of input products consumed and

output products produced are known. The problem consists of allocating processing

units and manpower over time such that at any point in time, a sufficient amount of

input products and sufficient storage capacity for output products is available, pre-

scribed time lags between operations are observed, and some convex objective function

in the start times of the operations is minimized. We propose a branch-and-bound

algorithm that is based on the representation of resource constraints as disjunctions of

linear inequality systems.

1. Introduction

Let O = {0, 1, . . . , n, n+ 1} be a set of operations to be executed on a chemical production
plant, where 0 and n+ 1 denote two fictitious operations representing the production start
and the production termination, respectively. The plant consists of processing units that
are linked by storage facilities for intermediate products. Besides a processing unit, each
operation requires manpower, input products, and storage space for output products. An
operation may be processed in batch or in continuous production mode. We speak of batch
production if the input products are consumed at the start and the output product arise at
the completion of the operation. An operation is processed in continuous production mode
if input products are consumed and output products arise at constant rates.

Processing units and manpower represent renewable resources, whose availability is in-
dependent from previous utilization. Let Rρ be the set of all renewable resources, and let
Rk denote the capacity of resource k ∈ Rρ. Inventories of intermediate products stocked in
storage facilities are modelled as cumulative resources, which are depleted and replenished
over time (see Trautmann, 2002). For notational convenience we assume that all cumulative
resources are either operated in batch access mode where all depletion and replenishment
rates are infinite (batch cumulative resources) or operated in continuous access mode where
all depletion and replenishment rates are finite (continuous cumulative resources). Rβ and
Rγ denote the sets of batch and continuous cumulative resources, respectively. For each
cumulative resource k ∈ Rβ ∪ Rγ , a minimum inventory level or safety stock Rk and a
maximum inventory level or storage capacity Rk are given.

Each operation i ∈ O is associated with a processing time pi and demands rik for
resources k ∈ Rρ ∪ Rβ ∪ Rγ . If k is a renewable resource, rik equals the number of units
of resource k used for processing i. If k is a cumulative resource, rik is the total increase



in the inventory level of resource k caused by operation i. If rik < 0, operation i depletes
resource k by −rik units, and if rik > 0, operation i replenishes resource k by rik units.

For certain pairs of operations (i, j) from a set TL ⊂ O × O, a minimum time lag δij
between the start of operation i and the start of operation j is prescribed. A negative
minimum time lag δij can be interpreted as a positive maximum time lag −δij between
operation j and operation i. These temporal constraints may arise from technological or
organizational requirements such as release dates for raw materials, delivery dates for final
products, or quarantine and shelf life times for intermediate products (cf. Trautmann, 2002).

We consider the problem of finding a start time Si for each operation i ∈ O such that
some convex function f in start times Si is minimized and the constraints arising from the
limited availability of renewable and cumulative resources as well as the temporal constraints
are taken into account.

2. Model

Let S = (Si)i∈O with S0 = 0 and Si ≥ 0 for all i ∈ O be some (production) schedule.
A(S, t) = {i ∈ O | Si ≤ t < Si + pi} is the set of all operations i being in progress at
time t, and rρk(S, t) =

∑

i∈A(S,t) rik is the amount of renewable resource k used at time t.

For given cumulative resource k, let O−
k = {i ∈ O | rik < 0} and O+

k = {i ∈ O | rik > 0}
denote the sets of operations depleting and replenishing, respectively, resource k. For batch
cumulative resource k ∈ Rβ , Ak(S, t) = {i ∈ O−

k | Si ≤ t} ∪ {i ∈ O+
k | Si + pi ≤ t}

is the set of all operations that have depleted and replenished resource k by time t, and
rβk (S, t) =

∑

i∈Ak(S,t)
rik is the inventory level in resource k at time t. With

xi(S, t) =

{

0, if t < Si

1, if t ≥ Si + pi
(t− Si)/pi, otherwise

we denote the portion of operation i ∈ O that has been processed by time t. The inventory
in continuous cumulative resource k ∈ Rγ at time t is rγk (S, t) =

∑

i∈O rikxi(S, t). The
production scheduling problem (PSP) to be dealt with can be formulated as follows.

(PSP)































Minimize f(S)
subject to rρk(S, t) ≤ Rk (k ∈ Rρ, t ≥ 0) (1)

Rk ≤ rβk (S, t) ≤ Rk (k ∈ Rβ , t ≥ 0) (2)
Rk ≤ rγk (S, t) ≤ Rk (k ∈ Rγ , t ≥ 0) (3)
Sj − Si ≥ δij ((i, j) ∈ TL) (4)
S0 = 0, Si ≥ 0 (i ∈ O) (5)

A schedule S satisfying the temporal constraints (4) and (5) is termed time-feasible. A
feasible schedule is a time-feasible schedule S that complies with the resource constraints
(1) to (3). S is an optimal schedule if it is feasible and minimizes f .

3. Solution Method

In what follows we expand an approach devised by De Reyck and Herroelen (1998) for
project scheduling with renewable resources to deal with our problem. Laborie (2001) and
Neumann (2002) discuss a generalization of the latter approach to scheduling problems with
cumulative-resource constraints where the consumption and production rates are infinite.



The basic principle is as follows. We omit the resource constraints and solve the result-
ing convex program by computing some time-feasible schedule S that minimizes objective
function f . If S is feasible, S is an optimal schedule. Otherwise, we determine some point in
time t for which any of the resource constraints (1) to (3) is not satisfied. Depending on the
type of resource constraint violated, we determine alternative sets of precedence relation-
ships between operations resolving the resource conflict. We then select one alternative and
add the corresponding precedence relationships to the convex program, which is then solved
again. Solving the convex program and adding precedence relationships is repeated until
either the feasible region becomes void or a feasible schedule has been found. In both cases
we return to an alternative set of precedence relationships and proceed until all alternatives
have been investigated.

In the following, we discuss how to to find appropriate precedence relationships between
operations. We first briefly review the case where at time t, constraints (1) or (2) are violated
(for details we refer to Neumann, 2002). Excessive utilization of renewable resources can
be settled by introducing temporal constraints Sj − Si ≥ pi between operations i, j being
processed at time t (i.e., i, j ∈ A(S, t)). In case of an inventory shortage in a batch cumulative
resource k ∈ Rβ at time t, we add temporal constraints Sj − Si ≥ pi between replenishing
operations i that are completed after time t (i.e., i ∈ O+

k \Ak(S, t)) and depleting operations j
that have been started by time t (i.e., j ∈ O−

k ∩Ak(S, t)). If the storage capacity of resource
k is exceeded at time t, we add temporal constraints Sj − Si ≥ −pj between depleting
operations i that are started after time t (i.e., i ∈ O−

k \Ak(S, t)) and replenishing operations
j that have been completed by time t (i.e., j ∈ O+

k ∩ Ak(S, t)).
We now consider in more detail how to deal with violations of the resource constraints

(3) referring to continuous cumulative resources. Assume that at time t, the inventory in
some resource k ∈ Rγ falls below the safety stock Rk. We partition the set Ok = O−

k ∪O+
k of

all operations depleting and replenishing resource k into two sets A and B with the following
meaning. A contains all operations j ∈ O−

k that will have to be completed by deadline t
and all operations j ∈ O+

k that will be released at time t, that is,

Sj ≤ t− pj (j ∈ A ∩O−
k )

Sj ≥ t (j ∈ A ∩O+
k )

}

(6)

The depletion of resource k at time t arising from operations j ∈ A equals −
∑

j∈A∩O
−

k
rjk.

The operations j from set B must be scheduled such that at time t, their cumulative replen-
ishment of k is greater than or equal to the inventory shortage Rk −

∑

j∈A∩O
−

k
rjk caused

by the operations from set A. This can be achieved as follows. For each operation j ∈ B,
we introduce a continuous decision variable xj with

0 ≤ xj ≤ 1 (j ∈ B) (7)

providing the portion of operation j that will be processed by time t. The requirement that
the inventory in resource k at time t must not fall below Rk then reads

∑

j∈B

rjkxj ≥ Rk −
∑

j∈A∩O
−

k

rjk (8)

The coupling between decision variables xj and Sj is achieved by the temporal constraints
(parameterized in xj)

Sj ≥ t− pjxj (j ∈ B ∩O−
k )

Sj ≤ t− pjxj (j ∈ B ∩O+
k )

}

(9)



Inequalities (9) imply that for each schedule S satisfying (9), xj ≥ xj(S, t) if operation j ∈ B
depletes and that xj ≤ xj(S, t) if operation j ∈ B replenishes resource k. Adding constraints
(6) to (9) to the convex program settles the inventory shortage at time t. Violations of the
storage capacities can be dealt with analogously by interchanging the sets O−

k and O+
k in

inequalities (6) and (9) and replacing (8) by
∑

j∈B

rjkxj ≤ Rk −
∑

j∈A∩O
+

k

rjk (10)

The inventory in resource k attains its minimum at a point in time when some replen-
ishing operation i is started or when some depleting operation i is completed. That is why
time t can always be chosen to be equal to Si for some i ∈ O+

k or equal to Si + pi for some
i ∈ O−

k , and thus we can replace t in (6) and (9) by Si or Si + pi. We then write Aik and
Bik instead of A and B as well as xik

j instead of xj . Note that without loss of generality

we can assume i ∈ Aik for all k ∈ Rγ and all i ∈ Ok because the corresponding inequality
(6) is always satisfied. Switching from constants t to variables Si ensures that only a finite
number of constraints have to be introduced before constraints (3) are satisfied.

4. Implementationary Issues

Assume that the inventory in some resource k ∈ Rγ falls below the safety stock at time
t = Si (i ∈ O+

k ) or t = Si + pi (i ∈ O−
k ). To enumerate the sets Aik and Bik we construct a

binary tree as follows. Each level of the tree belongs to one operation j ∈ Ok. For each j,
we branch over the two alternatives j ∈ Aik and j ∈ Bik and add the respective constraints
(6), (7), (9), and the relaxation

∑

j∈Bik

rjkx
ik
j ≥ Rk −

∑

j∈Aik∩O
−

k

rjk −
∑

j∈O
+

k
\Ajk\Bik

rjk (11)

of constraint (8) to the convex program. Each leaf of the tree corresponds to one distinct
partition {Aik, Bik}. We can suspend the enumeration for pair (i, k) as soon as the inventory
shortage at time Si or Si + pi is settled, even if Aik ∪Bik ⊂ Ok. In the latter case, it may
be necessary to resume the branching later on if the shortage reappears while dealing with
other resource conflicts. Since at most 3n(n−1)/2 temporal constraints of type Sj −Si ≥ pi
and Sj −Si ≥ −pj can be added to the initial convex program and because for each k ∈ Rγ

and each i ∈ Ok, the construction of the corresponding sets Aik and Bik requires at most
|Ok| steps, the height of the branch-and-bound tree is O(max[n2,

∑

k∈Rγ |Ok|
2]).
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