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Abstract 

In this paper we consider the short-term production planning problem of multipurpose continuous plants. 
This problem quite naturally decomposes into a planning problem of optimizing the operating conditions 
and processing times of the continuous tasks and a scheduling problem, which consists in allocating 
processing units, input materials, and storage space over time to the resulting operations. The planning 
problem can be formulated as a continuous nonlinear programming problem of moderate size. Due to 
constraints on material availability and storage capacity for intermediate products, for solving the 
scheduling problem classical schedule-generation schemes cannot be applied. That is why we use a new 
two-phase approach dealing with the two types of constraints separately. 

1.  Introduction 

A multipurpose continuous production plant consists of several processing units and storage facilities for 
intermediate products, which are linked by flexible hoses or pipelines. Final products are produced through a 
sequence of continuous tasks being executed on individual processing units. A processing unit must be 
cleaned between the executions of different tasks, the cleaning times generally being sequence-dependent. 
Each task may be executed on alternative processing units, and for each task the processing time, the 
production rate, as well as the proportions of the input and output products may be chosen within prescribed 
intervals. Whereas certain intermediate products can be stocked in dedicated storage facilities of finite 
capacity, others are chemically instable and must be consumed instantly. The execution of a task on a 
processing unit during a specified processing time and with specified production rate and input and output 
proportions is referred to as an operation. Given a set of primary requirements for the final products of some 
family, the short-term production planning problem consists in first, generating an appropriate set of 
operations (planning problem) and second, scheduling the operations on the processing units of the plant 
(scheduling problem). Since the plant can only be reconfigured for processing the next product family when 
all operations have been completed, we assume that the objective is to minimize the makespan needed for 
satisfying the given primary requirements. 

A significant body of chemical engineering research has been focused on the short-term planning of 
batch plants. Much less work has been reported on continuous process scheduling even though continuous 
processes constitute an important component of process industries. Classical approaches to continuous 
process scheduling assumed the demand for final products to be constant over time (see e.g., Sahinides and 
Grossmann 1991). More recently, different types of MINLP and MILP continuous-time formulations have 
been developed for the general short-term production planning of continuous plants with demands at discrete 
points in time (such models have for example been devised by Ierapetritou and Floudas 1998, Mockus and 



Reklaitis 1999, and Méndez and Cerdá 2002). A relaxation-based branch-and-bound algorithm for solving 
the scheduling problem for given set of operations has been proposed by Neumann et al. (2005). Constraint 
propagation techniques for the scheduling of continuous material flows can be found in Sourd and Rogerie 
(2002). 

In contrast to the monolithic MINLP and MILP models, we follow a hierarchical approach, with the 
planning problem at the top level and the scheduling problem at the base level. This heuristic decomposition 
of the problem allows us to cope with instances of practical size within a reasonable amount of computing 
time. 

2.  The planning problem 

In this section we consider the planning problem in more detail. Let T  be the set of all tasks  and let τ P  be 
the set of all raw materials, intermediate products, and final products π  under consideration. For each task 

 we have to determine the processing time , the production rate , and the input and output 
proportions  of all products 

T∈τ τp τγ
τπα P∈π  consumed or produced, respectively, during the execution of task τ , 

where we establish the convention that 0<ατπ  for input products π . By  and  we denote the sets of 
all input or output products of task . Symmetrically,  and  are 
the sets of all tasks consuming or producing product 
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π . Moreover, let iP  be the set of all intermediate 
products and  be the set of all perishable intermediate products. For each product ip PP ⊆ P∈π  a primary 
requirement , including an unavoidable residual stock minus the initial stock, as well as the capacity πρ πσ  
of the storage facility for  are given, where π 0=σπ  if pP∈π . For simplicity, we assume that all 
alternative processing units on which a given task T∈τ  can be executed are identical. As a consequence, 
the assignment of units to tasks may be deferred to the scheduling phase, and the planning problem (PP) can 
be formulated as follows: 
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The goal of the planning phase consists in defining the operating conditions and processing times in such a 
way that the workload to be scheduled during the scheduling phase is minimized. Constraints (1)−(3) define 
the feasible domains of input and output proportions, processing times, and production rates. The mass 
balance constraint (4) says that for each task the amount of products consumed coincides with the amount of 
products produced. Constraint (5) ensures that the final inventories of the products after the execution of all 
tasks are sufficiently large to meet the primary requirements and that the residual stocks after having 
satisfied all demands do not exceed the storage capacities. Constraint (6) guarantees that each perishable 
product pP∈π  produced by some task τ  can be simultaneously consumed at the same rate by any 
consuming task . Constraint (7) requires that the total production time of a perishable product −

π∈τ T' π  
equals the total consumption time, which together with (6) implies that the amount of  produced coincides π



with the amount consumed. Inequalities (8) and (9) ensure that the operating conditions and processing 
times are chosen in such a way that there exists a production schedule satisfying the storage-capacity 
constraints for the storable intermediate products, where we suppose that all tasks producing or consuming, 
respectively, the same intermediate product are executed one after another. For the case where some or all of 
those tasks can be processed in parallel, appropriate relaxations of (8) and (9) can be used. 

By introducing the new variables ττπτπ γα=ξ :  ( T∈τ , ), problem (PP) can be transformed 
into a nonlinear programming problem with linear objective function, linear constraints (1)−(4), (6), (7), and 
bilinear constraints (5), (8), and (9). 
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3. The scheduling problem 

As a result of the planning phase we have obtained a set O  of operations  of durations , which must be 
scheduled on the processing units subject to material-availability and storage-capacity constraints. The 
scheduling problem can be modeled as a resource-constrained project scheduling problem with renewable 
resources , continuous cumulative resources l , and sequence-dependent changeover times 
between operations. By  we denote the start time of operation , and 

i ip

ρ∈Rk γ∈R

iS i O∈= iiSS )(  is the production 
schedule sought. 

We group identical processing units to a renewable resource  whose capacity  is equal to the 
number of units in the group. If operation i  is executed on a unit of resource , the resource requirement is 

, otherwise we have . Between consecutive operations 

ρ∈Rk kR
k

1=ikr 0=ikr O∈i,j  that are carried out on the same 
unit of resource  a sequence-dependent changeover time arises for cleaning the unit. By  we denote 
the minimum number of units of resource k  needed to implement schedule  with respect to all 
assignments of operations to units. Number  can be computed efficiently using network flow 
algorithms (see e.g., Schwindt 2005, Sect. 5.2). 
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S
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In addition, we associate a continuous cumulative resource  with each product γ∈Rl P∈π , 0:=lR  and 
πσ=:lR  being the minimum and maximum inventory levels of . The (total) requirement of operation  

belonging to task  for resource  stocking product 
l i

τ l π  equals iil pr ττπγα=: . Let  be the portion of 
operation  that has been processed by time  given schedule . The inventory of continuous 
cumulative resource  at time t  is 

),( tSxi
O∈i t S

l ),(:),( tSxrtSr iilil O∈Σ= . The scheduling problem (SP) now reads as 
follows: 
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The objective function corresponds to the production makespan to be minimized. Constraint (10) guarantees 
that there exists an assignment of the operations to the processing units such that for each renewable 
resource  the number of units used jointly does not exceed the resource capacity at any point in time. The 
inequalities in constraint (11) correspond to the material-availability and storage-capacity constraints, and 
(12) are the nonnegativity conditions for start times S

k

i. 
For solving scheduling problem (SP) we use a two-phase priority-rule based heuristic. A preliminary 

version of this method for the case of batch production can be found in Schwindt and Trautmann (2004). At 
first, we perform a preprocessing step where we apply a number of constraint propagation techniques 
providing temporal constraints of type ijij SS δ≥−  between the start times of certain operations O∈i,j . It 
is customary to represent those temporal constraints by an operation-on-node network . In the first phase 
of the priority-rule based method, we relax the storage-capacity constraints. Using a serial schedule-
generation scheme, in each iteration we schedule an eligible operation  at the earliest point in time at 
which renewable resource  with  and all input products are available during the entire execution 

N

j
k 1=jkr



time. An operation  is eligible if two conditions are met. First, all predecessors  of  with respect to a 
specified precedence order  must have been scheduled. A classical precedence order is the distance order 
where  if the temporal constraints imply 

j i j
p

ji p ji SS ≤  but not ij SS ≤  (see Neumann et al. 2003, Sect. 1.4). 
It proves to be expedient to modify the precedence order such that all operations from a strong component in 

 are scheduled one after another. The second condition says that the remaining storage capacities after the 
completion of all operations  scheduled in previous iterations must suffice to stock the output products of 
operation j. 

N
i

After the termination of the first phase we then introduce, for each intermediate product, appropriate 
temporal constraints between operations producing and consuming, respectively, the product according to a 
FIFO policy. Those temporal constraints are satisfied by schedule  and ensure that no shortage of input 
products can occur during the execution of any operation. In the second phase, we re-perform the scheduling 
of the operations, starting each operation at the earliest point in time where the temporal constraints are 
satisfied and where during the execution of the operation the processing unit and storage capacity for all 
output products are available. 

S

Sometimes it may happen that due to temporal constraints between operations  already scheduled and 
the operation  selected, the latest time-feasible start time of  is strictly smaller than the earliest resource-
feasible start time of 

i
j j

j . Then no feasible start time can be found for operation j , and the current partial 
schedule cannot be extended to a feasible schedule. Since already the problem of finding a feasible schedule 
is NP-hard, this kind of deadlock cannot be avoided in a schedule-construction procedure. To resolve the 
deadlock, we perform the following unscheduling step. We determine the set U  of all scheduled operations 

 that must be delayed when increasing the latest start time of , we increase the earliest start times of 
operations  beyond times , and we restart the scheduling procedure with the modified earliest start 
times. 

i j
U∈i iS
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