
A serial schedule-generation scheme for preemptive

project scheduling problems with generalized

precedence relations and regular min-max criteria

Christoph Schwindt and Tobias Paetz

Clausthal University of Technology, Germany
{christoph.schwindt,tobias.paetz}@tu-clausthal.de

Keywords: project scheduling, activity preemptions, generalized precedence relations,
min-max criteria, schedule-generation scheme.

1 Introduction

In this paper we devise an extension of the serial schedule-generation scheme that is adapted
to a general class of preemptive project scheduling problems. We suppose that each activity
of the project can be interrupted at any point in time, that generalized precedence relations
between the activities have to be taken into account, and that the objective function fmax

to be minimized can be expressed as the maximum of regular functions fj(Cj) in the
completion times Cj of activities j.

Approaches for preemptive project scheduling that allow for continuous activity in-
terruptions are generally based on problem formulations where feasible sets of activities
are associated with decision variables representing the time during which these activities
are processed in parallel (see, e. g., Damay et al. 2007 or Schwindt and Paetz 2015). The
main difficulty in developing schedule-construction procedures for continuous preemption
problems arises from the fact that activities may have to be interrupted at points in time
when no activity is released and no scheduled activity is started or completed. We resolve
this difficulty by performing a binary search over the set of potential optimum objective
function values v, translating them into deadlines for the completion of the activities, and
considering the resulting latest start and completion times of the activities as additional
decision points at which activities may be suspended or resumed.

2 Problem statement

Consider a project that consists of a set V of activities j with deterministic durations pj.
To perform the activities, a set R of renewable resources k with capacities Rk is available.
When being in progress, each activity j requires rjk units of resources k ∈ R. The processing
of an activity may be stopped at any point in time and resumed later on using an arbitrary
set of rjk available units of each resource k. As it has been shown by Baptiste et al. (2011)
for a more general preemptive scheduling problem, each feasible instance of the problem
admits a solution with a finite number of activity interruptions. Hence, a schedule may
be encoded as a finite set Σ of triples (j, sj , cj) providing the time intervals [sj , cj [during
which activities j are in progress. Equivalently, a solution to the problem can be specified
as a trajectory x : t 7→ (xj(t))j∈V , where xj(t) ∈ [0, 1] denotes the percentage of activity j
that has been processed by time t ≥ 0.

The generalized precedence relations between the activities can be stated in the follow-
ing way. Let t−

j (ξ) := min{t ≥ 0 | xj(t) ≥ ξ} with 0 < ξ ≤ 1 and t+
j (ξ) := sup{t ≥ 0 |

xj(t) ≤ ξ} with 0 ≤ ξ < 1 be the earliest and latest times t, respectively, at which activ-
ity j has been executed to portion ξ. The precedence relations ∆ij = (ξi, ξj , δij) for pairs
(i, j) ∈ E ⊆ V × V require that the final portion 1 − ξj of activity j can be started δij time

units after activity i attained relative progress ξi at the earliest, i. e., t+
j (ξj) ≥ t−

i (ξi) + δij

for (i, j) ∈ E. In Schwindt and Paetz (2015) it is shown that by appropriately splitting

activities, all precedence relations can be transformed into completion-to-start relations
∆ij = (1, 0, δcs

ij) between the completion time Ci of activity i and the start time Sj of
activity j. Note that (i) negative time lags δcs

ij < 0 can be interpreted as positive maximum
start-to-completion time lags −δcs

ij between the start of j and the completion of i and that

(ii) set E may contain pairs (j, j) specifying maximum time spans for the execution of ac-
tivities j. In sum, we obtain the following formulation of the preemptive project scheduling
problem (P) under consideration, where yj(t) := pj · d+xj

dt (t) equals one if activity j is in
progress at time t, and zero, otherwise, and rk(·) denotes the loading profile of resource k.

(P)















Minimize fmax(C) = maxj∈V fj(Cj)

subject to rk(t) :=
∑

i∈V rikyi(t) ≤ Rk (k ∈ R; t ≥ 0)

Sj ≥ Ci + δcs
ij ((i, j) ∈ E)

Sj ≥ 0, Cj ≥ Sj + pj (j ∈ V)

3 Serial schedule-generation scheme

The serial schedule-generation scheme (SGS) is a basic building block of most heuristic
procedures for non-preemptive resource-constrained project scheduling problems with reg-
ular objective functions. SGS schedules the activities one after another at their earliest
time- and resource-feasible start times. The basic SGS was enhanced with an unscheduling
method by Franck et al. (2001) to cope with generalized precedence relations. In what
follows we adapt the latter scheme to problems with continuous activity preemptions and
regular min-max criteria fmax.

3.1 Binary search procedure

By Dcs = (dcs
ij)i,j∈V we denote the matrix of transitive completion-to-start time lags that

are implied by time lags δcs
ij with (i, j) ∈ E. Matrix Dcs can be computed efficiently by an

adapted version of the Floyd-Warshall algorithm for longest path calculations in networks.
Moreover, we assume that set V contains a dummy activity j = 0 with pj = 0 representing
the project beginning at time t = 0. Then, ESj = dcs

0j and LCj = −dcs
j0 are the earliest

time-feasible start and the latest time-feasible completion time of activity j.
Now assume that we are given some upper bound v on the objective function value

fmax(C). Upper bound v can easily be translated into a set of latest completion times LCj

of activities j ∈ V by taking advantage of the following equivalences:

fmax(C) = max
j∈V

fj(Cj) ≤ v ⇔ fj(Cj) ≤ v (j ∈ V) ⇔ Cj ≤ f−1
j (v) (j ∈ V)

where f−1
j (v) := sup{Cj | fj(Cj) ≤ v} and sup ∅ := −∞. The second equivalence holds

because we assume that functions fj are regular, i. e., nondecreasing in Cj . Hence, by
putting the latest completion times LCj to min{−dcs

j0, f−1
j (v)} for all j ∈ V we ensure that

fmax(C) ≤ v for any time-feasible schedule. Given the optimum objective function value
v = f∗

max, the latest completion times LCj then provide the latest start times LCj − pj at
which the activities must be started in order to obtain an optimal schedule.

The basic principle of our schedule-construction procedure is as follows. Assuming that
the problem is feasible, we compute some lower and upper bounds lb and ub on f∗

max.
We then perform a binary search for f∗

max on interval [lb, ub] starting with v = lb+ub
2 . In

each iteration, we apply the preemptive SGS to the instance where the latest completion
times LCj are set according to current upper bound v. If a feasible schedule is found, we
know that f∗

max ≤ fmax(C) ≤ v, which leads to the tighter upper bound ub := fmax(C).
Otherwise, we were not able to generate a feasible schedule with fmax(C) ≤ v, and we put
lb := v. With ε > 0 denoting a given accuracy tolerance, we recursively continue the search
process on the updated interval [lb, ub] until the width of the interval has been reduced to
ub− lb ≤ ε. The number of iterations of the binary search is of order O(log(ub − lb)− log ε),
where lb and ub stand for the original lower and upper bounds.

3.2 Serial schedule-generation scheme

To generate a schedule for a given upper bound v, we developed a preemptive version
of the enhanced SGS of Franck et al. (see Algorithms 1 and 2). All quantities referring
to sub-activities executed in time intervals [sj , cj [are designated with lowercase symbols,
whereas the quantities that apply to the entire activities j are written in uppercase letters.

Algorithm 1 Preemptive serial schedule-generation scheme

Input: Upper bound v on f∗
max, maximum number umax of unscheduling steps

Output: Feasible schedule Σ with fmax(C) ≤ v

1: for j ∈ V do dcs
j0 := max{dcs

j0, −f−1
j (v)};

2: for i ∈ V do dcs
i0 := max{dcs

i0 , maxj∈V (dcs
ij + pj + dcs

j0)};
3: for i, j ∈ V do dcs

ij := max{dcs
ij , dcs

i0 + dcs
0j};

4: for j ∈ V do esj := dcs
0j , LCj := −dcs

j0, Pred
≺(j) := {i ∈ V | dcs

ij + pi ≥ 0 ∧ dcs
ji + pj < 0};

5: S := C := {0}, Σ := {(0, 0, 0)}, Θ := {0}, u := 0;
6: while C 6= V do (∗ not all activities have entirely been processed ∗)
7: E := {j ∈ V \ C | Pred

≺(j) ⊆ C};
8: select activity j∗ ∈ arg minj∈E π(j);
9: sj∗ := min{t ≥ esj∗ | rk(t) + rj∗k ≤ Rk for all k ∈ R};

10: if sj∗ + pj∗ > LCj∗ then (∗ activity j∗ cannot be completed on time ∗)
11: if u ≥ umax then terminate;
12: else u := u + 1, unschedule(j∗, sj∗ + pj∗ − LCj∗);
13: else (∗ process activity j∗ from sj∗ to cj∗ ∗)
14: if j∗ /∈ S then

15: S := S ∪ {j∗}, Sj∗ := sj∗ ;
16: for j ∈ V \ C do LCj := min{LCj , Sj∗ − dcs

jj∗ };
17: for j ∈ V \ (C ∪ {j∗}) do esj := max{esj , sj∗ + pj∗ + dcs

j∗j};
18: cj∗ := min{t > sj∗ | t ∈ Θ ∪ {sj∗ + pj∗ } ∪ (∪j∈V \(C∪{j∗}){esj , esj + pj , LCj − pj , LCj})};
19: Σ := Σ ∪ {(j∗, sj∗ , cj∗)}, Θ := Θ ∪ {sj∗ , cj∗ };
20: pj∗ := pj∗ − (cj∗ − sj∗);
21: if pj∗ > 0 then esj∗ := cj∗ ;
22: else C := C ∪ {j∗}, Cj∗ := cj∗ ;
23: return Σ;

At first, we translate upper bound v into maximum time lags f−1
j (v) between project

beginning j = 0 and the completion of activities j ∈ V and update time lag matrix Dcs

(lines 1 – 3). Next, we schedule j = 0 and initialize the earliest start times esj, the latest
completion times LCj , the predecessor sets Pred≺(j), the sets of started and completed
activities S and C, the schedule Σ, the set Θ of start and completion times of scheduled
sub-activities, and the number u of unscheduling steps (lines 4 and 5). In each iteration, we
then compute the set E of all activities whose predecessors with respect to precedence order
≺ were already completed and which consequently are eligible to be scheduled (line 6). By
applying some priority rule π we choose one eligible activity j∗ and determine the earliest
point in time sj∗ at which it can be started or resumed (lines 6 and 7). If the resulting
earliest completion time of j∗ is larger than its latest completion time LCj∗ , we try to repair
the schedule by calling the unscheduling procedure (lines 10 – 12). Otherwise, we process
j∗ from time sj∗ to the next decision time cj∗ , decrease the residual processing time of
j∗ by cj∗ − sj∗ , and update the earliest start and latest completion times esj and LCj ,
schedule Σ, as well as sets S, C, and Θ (lines 14 – 22). The set of all decision times contains
the start and completion times t ∈ Θ of scheduled sub-activities, the earliest completion
time sj∗ + pj∗ of activity j∗, as well as the earliest and latest start and completion times of
all (sub-)activities not yet scheduled. When all activities have been entirely added to the
schedule, we return the generated schedule Σ (line 23).

The unscheduling procedure identifies the activities j ∈ U that determined the latest
completion time LCj∗ of activity j∗. The current schedule Σ is then cleared from the
minimum start time t∗ of activities j ∈ U . Next, the activities j ∈ U are delayed by the
minimum amount of time ∆ = sj∗ +pj∗ −LCj∗ that is necessary to get a latest completion
time of LCj∗ = sj∗ + pj∗ in the next pass of the SGS. Finally, the earliest start and latest
completion times are updated.

Algorithm 2 unschedule(j∗, ∆)

U := {j ∈ S | LCj∗ = Sj − dcs
j∗j}, t∗ := minj∈U Sj ;

for j ∈ S do (∗ clear schedule from time t∗ to end ∗)
pj := pj +

∑

(j,sj ,cj)∈Σ:sj≥t∗
(cj − sj);

Σ := Σ \ {(j, sj , cj) | sj ≥ t∗}, Θ := Θ \ {sj , cj};
if {(j, sj , cj) | (j, sj , cj) ∈ Σ} = ∅ then S := S \ {j};
if j ∈ C and pj > 0 then C := C \ {j};
if j ∈ S \ C then esj := max{cj | (j, sj , cj) ∈ Σ};

for j ∈ U do (∗ delay activities j ∈ U ∗)
esj := Sj + ∆;
if esj + pj > −dcs

j0 then terminate;
(∗ update earliest start and latest completion times ∗)
for j ∈ V \ (S ∪ U) do esj := max{dcs

0j , maxi∈S∪U(esi + pi + dcs
ij)};

for j ∈ V \ C do LCj := min{−dcs
j0, mini∈S(Si − dcs

ji)};

4 Experimental performance analysis

We tested the performance of the preemptive SGS by solving the preemptive versions of 360
instances of the resource-constrained project duration problem with generalized precedence
relations PS |temp|Cmax. The respective UBO-10, UBO-20, UBO-50, and UBO-100 test sets
each contain 90 projects with 5 resources and n = 10, 20, 50, or 100 activities (see Franck
et al. 2001). In our randomized multi-start implementation, we repeated the binary search
100 times and selected the best schedule found. The priority indices for choosing activity j∗

to be scheduled next in the SGS were calculated according to

π(j) = (LCj − pj) · (1 − 2σ(µ) · rnd) with σ(µ) = [1 + e−α·(µ−µmax/2)]−1

where µ = 1, . . . , µmax is the number of the respective run of the binary search, rnd
is a (0, 1)-uniformly distributed pseudo-random number, and parameter α was set to 0.1.
This multi-start heuristic was applied to the original UBO instances and the set of mirrored
instances that were created using the transformation rules described in Hanzálek and S̆̊ucha
(2009). The algorithm was coded in C# under Visual Studio Express 2015 for Win Desktop.
We performed the experiments on an Intel i5 PC with 3,4 GHz clock pulse and 8 GB
RAM, running Win 7 Professional 64 Bit as operating system. The accuracy tolerance of
the binary search was set to ε = 10−4.

Tables 1 and 2 show the results obtained when the multi-start algorithm with was ap-
plied to the original instances (“forward scheduling” with µmax = 100) and to the original
and the mirrored instances (“forward and backward scheduling” with µmax = 50). For each
of the four test sets, the tables display (all percentages are specified in percent)

– the percentages p
pmtn
inf and p

npmtn
inf of instances for which infeasibility is known when

preemption is allowed or not allowed,
– the relative deviations ∆MILP and ∆npmtn of the best project durations yielded by SGS

from the best known solutions for the preemptive problem obtained with the MILP
formulation of Schwindt and Paetz (2015) and for the the non-preemptive problem,

– the percentages popt and pfeas of optimal and feasible but not necessarily optimal
schedules found as well as the percentages pnfeas of instances for which no feasible
schedule was generated,

– the percentages pnfnd of feasible instances for which no solution was found, the per-
centages pfnd of infeasible instances of the non-preemptive problem for which a feasible
preemptive schedule was found, and the percentages pimp of instances for which SGS
improved the project duration compared to the best known non-preemptive solution,

– the mean CPU times tcpu in seconds and the mean total number # it of SGS runs in
the binary search.

When the multi-pass method was applied to the original instances, we obtained mod-
erate mean deviations from the best known MILP solutions of 0.5 and 0.06 %. Allowing for
activity preemptions reduced the project duration by 1.2 to 1.7 % on average. For ten of the
360 instances no feasible schedule could be generated even though the instances are known
to be feasible. On the other hand, we obtained a feasible schedule for 18 instances that
are infeasible when activity splitting is not allowed and got better project durations when
considering activity interruptions in 140 cases. Ranging between 0.14 and 24.5 seconds, the
mean CPU times appeared to be in a reasonable order of magnitude.

Table 1. Results for UBO test sets: forward scheduling

ppmtn

inf pnpmtn

inf ∆MILP ∆npmtn popt pfeas pnfeas pnfnd pfnd pimp tcpu # it

n = 10 14.44 18.89 0.50 −1.71 48.89 36.67 14.44 0.00 4.44 27.78 0.14 1668
n = 20 10.00 22.22 0.06 −1.68 21.11 66.67 12.22 0.00 10.00 36.67 0.37 1746
n = 50 12.22 18.89 N/A −1.35 22.22 61.11 16.67 1.11 3.33 44.44 3.15 1728
n = 100 5.56 13.33 N/A −1.16 15.56 62.22 22.22 8.89 0.00 46.67 24.50 1837

Combining forward and backward scheduling further enhanced the performance of the
multi-pass method. In particular, the improvement on the non-preemptive schedules was
increased and more feasible schedules were found. In fact, there is only one instance known
to be feasible for which no schedule could be generated. Given that the feasibility variant
of the problem is strongly NP-complete, the performance seems promising.

Table 2. Results for UBO test sets: forward and backward scheduling

ppmtn

inf
pnpmtn

inf
∆MILP ∆npmtn popt pfeas pnfeas pnfnd pfnd pimp tcpu # it

n = 10 14.44 18.89 0.17 −2.04 52.22 33.33 14.44 0.00 4.44 31.11 0.14 1662
n = 20 10.00 22.22 −1.08 −2.66 26.67 62.22 11.11 0.00 11.11 46.67 0.34 1715
n = 50 12.22 18.89 N/A −2.12 23.33 60.00 16.67 0.00 2.22 52.22 3.37 1732
n = 100 5.56 13.33 N/A −1.41 16.67 70.00 13.33 1.11 1.11 57.78 25.16 1835

References

Baptiste P., J. Carlier, A. Kononov, M. Queyranne, S. Sevastyanov, and M. Sviridenko,
2011, “Properties of optimal schedules in preemptive shop scheduling”. Discrete Appl
Math, Vol. 159, pp. 272–280.

Damay, J., A. Quilliot, and E. Sanlaville, 2007, “Linear programming based algorithms for
preemptive and non-preemptive RCPSP”. Eur J Oper Res, Vol. 182, pp. 1012–1022.

Franck, B., K. Neumann, and C. Schwindt, 2001, “Truncated branch-and-bound, schedule-
construction, and schedule-improvement procedures for resource-constrained project
scheduling”, OR Spektrum, Vol. 23, pp. 297–324.

Hanzálek Z., P. S̆̊ucha, 2009, “Time Symmetry of Project Scheduling with Time Windows
and Take-give Resources”, In: 4th Multidisciplinary International Scheduling Conference:
Theory and Applications, pp. 239–253.

Schwindt C., T. Paetz, 2015, “Continuous Preemption Problems”, Chapter 13, In: Handbook
on Project Management and Scheduling Vol. 1, C. Schwindt, J. Zimmermann, Springer,
Cham, Heidelberg, New York, Dordrecht, London, pp. 251–295.

