
1

A time-based schedule-generation scheme for project

scheduling with storage resources

Mario C. Sillus and Christoph Schwindt

Clausthal University of Technology, Germany
{mario.christian.sillus,christoph.schwindt}@tu-clausthal.de

Keywords: schedule-generation scheme, storage resources, dynamic release dates, gener-
alized precedence relations.

1 Introduction

Storage resources model material stocks or liquid funds, which are depleted and replenished
at the occurrence of certain events during the execution of a project. Both renewable and
nonrenewable resources are special cases of storage resources. Project scheduling subject
to storage-resource constraints and generalized precedence relations consists in sequencing
the events in such a way that the inventories of the storage resources evolve within given
bounds and prescribed minimum and maximum time lags between the events are met.

The problem was introduced by Neumann and Schwindt (2002), who addressed struc-
tural issues, generated benchmark data sets, and devised a branch-and-bound algorithm
enumerating disjunctions of precedence relations. Laborie (2003) presents consistency tests
and an effective constrained-based branch-and-bound algorithm solving all remaining open
instances. Carlier et al. (2009) consider a special case with a single resource of infinite
capacity. They report on complexity results and propose polynomial-time algorithms to
compute an optimal schedule for a given sequence of events. Carlier et al. (2018) propose
tight lower bounds for the instances of Neumann and Schwindt.

In this paper, we present a time-based schedule-generation scheme that is intended
to serve as a building block for metaheuristic schedule-improvement procedures for large
problem instances. The method decodes an event list into a feasible schedule by iteratively
resolving resource conflicts.

The remainder of this paper is organized as follows. In Sect. 2 we provide a concep-
tual model formulation and briefly review structural properties of the problem. The basic
schedule-generation scheme and several enhancements are developed in Sect. 3. In Sect. 4
we report on computational results obtained on a standard data set from literature.

2 Problem statement

We consider a project employing several storage resources k ∈ R. During project execution,
the inventory level of each resource k must remain within a given nonempty interval [Rk, Rk]
with Rk ∈ Z ∪ {−∞} and Rk ∈ Z ∪ {∞}. The inventory levels of resources k ∈ R change
upon occurrences of events i = 1, . . . , n, which typically coincide with project milestones
or starts and completions of project activities. Upon occurrence of event i, the inventory
levels of resources k change by rik ∈ Z units. We say that i replenishes the inventory of
k if rik > 0 and i depletes the inventory of k if rik < 0. The set V of all events also
contains two fictitious events i = 0 and i = n + 1 standing for the project start and
termination, respectively, where r0k is the opening stock level of resource k and without
loss of generality r(n+1)k = 0. For certain pairs (i, j) ∈ A of events i, j ∈ V , a minimum time
lag δij ∈ Z between the occurrences of i and j is prescribed. If δij < 0, the value −δij can
be viewed as maximum time lag between events j and i. The project scheduling problem
(PSc|temp|Cmax) under consideration consists in assigning occurrence times ti ≥ 0 to all
events i ∈ V in such a way that (1) a given regular (i. e., componentwise nondecreasing)

2

objective function f in vector t = (ti)i∈V is minimized, (2) the resource constraints arising
from the storage resources and (3) the generalized precedence relations defined by the time
lags are satisfied, and (4) the project is started at time 0.

(PSc|temp|f)

Min. f(t) (1)
s. t. Rk ≤

∑

i∈V :ti≤tj

rik ≤ Rk (j ∈ V ; k ∈ R) (2)

tj − ti ≥ δij ((i, j) ∈ A) (3)
t0 = 0 (4)

Problem PSc|temp|f generalizes the classical problem PS |temp|f with renewable re-
sources, whose feasibility variant is known to be strongly NP-hard. In difference to the
case of renewable resources, finding a feasible schedule for the more general problem with
storage resources remains NP-hard even if |R| = 1 and δij > 0 for all (i, j) ∈ A.

3 Schedule-generation scheme

Let Π be the set of all precedence-feasible permutations π on set V , i. e., the set of all event
lists π = (0, i1, . . . , in, n + 1) with λ < µ if dij ≥ 0 and dji < 0 for i = iλ and j = iµ. By
S′ we denote the set S of all feasible schedules t plus an infeasible schedule t

∞ serving to
indicate that no feasible schedule could be found. Basically, a schedule-generation scheme
(SGS) is a mapping σ : Π → S′ assigning a schedule t

′ ∈ S′ to each permutation π ∈ Π.

3.1 Basic scheme

Traditional schedule-generation schemes, like the serial SGS for problems with renewable
resources, schedule the activities one by one in the order given by permutation π. In
each iteration, the respective partial schedule represents a feasible solution to the problem
defined on the set of activities scheduled thus far. Deadlocks caused by maximum time
lags are resolved using unscheduling techniques. Given that preserving the feasibility of a
partial schedule would generally require the simultaneous addition of several events and
that finding such a set constitutes an NP-hard problem, we opt for a different approach,
which draws from an enumeration scheme with dynamic activity release dates devised by
Fest et al. (1998) for the project duration problem PS |temp|Cmax. The basic idea consists
in first relaxing the resource constraints and then iteratively resolving inventory shortfalls
or excesses by defining release dates δ0j for appropriate events j, which are determined
by their position in π. The principle to (pre-)select the events to be postponed via a
permutation can be interpreted as a linear preselective strategy (Stork 2001).

Our time-based SGS is displayed in Algorithm 1. Let D = (dij)i,j∈V denote the distance
matrix containing the transitive time lags dij implied by prescribed time lags δij . In each
iteration of the SGS, we consider the current earliest schedule et = (d0i)i∈V with t0 = 0
and satisfying all time lags δij for (i, j) ∈ A and release dates δ0j introduced so far.
Schedule et is then scanned for the earliest time t at which a resource conflict occurs, i. e.,
rk(et, t) :=

∑

i∈V :eti≤t rik /∈ [Rk, Rk] for some k. If Rk ≤ rk(et, t) ≤ Rk for all k ∈ R and
all t ≥ 0, the SGS is terminated by returning feasible schedule et. Otherwise, we compute
the set C of all events j ∈ V that contributed to the resource conflict on k. To resolve the
conflict, at least one event j ∈ C has to be delayed to the earliest occurrence time eti > t
of an event i with the opposite resource requirement, i. e., rik · rjk < 0. Event j can be
synchronized with event i precisely if dji ≤ 0. The event that is actually deferred is the
last element j ∈ C on list π possessing such a partner event i. If no such event j exists, the
SGS is stopped and infeasible schedule t

∞ is returned. Otherwise, the new release date δ0j

is set to t∗
j := min{eti | i ∈ V, eti > t, rik · rjk < 0, dji ≤ 0}. Finally, δ0j is added to

distance matrix D by updating d0l := max{d0l, t∗
j + djl} for all events l ∈ V .

3

Algorithm 1 Basic schedule-generation scheme SGS(π)

1: compute distance matrix D = (dij)i,j∈V of time lags (δij)(i,j)∈A;
2: loop

3: set earliest schedule et := (d0i)i∈V ;
4: determine earliest time t at which a resource conflict occurs on some resource k ∈ R;
5: if t = ∞ then return et; (∗ feasible schedule has been generated ∗)
6: if rk(et, t) < Rk then set conflict set C := {j ∈ V | etj ≤ t, rjk < 0};
7: else set conflict set C := {j ∈ V | etj ≤ t, rjk > 0};
8: determine last event j ∈ C on π with t∗

j := mini∈V {eti | eti > t, rik · rjk < 0, dji ≤ 0} < ∞;
9: if there is no such event j then return t

∞; (∗ no feasible schedule could be found ∗)
10: else put d0l := max{d0l, t∗

j + djl} for all l ∈ V ; (∗ add δ0j = t∗

j and update D ∗)

3.2 Expansions

E1: Randomization. Given that we add release dates δ0j = t∗
j and not precedence

relations δij = 0, the SGS can encounter a so-called leapfrogging phenomenon that may
cause cycling in an infinite loop of mutual shifting among three or more events. To get
out of leapfrogging, it proves expedient to introduce a pinch of randomness when selecting
event j. More precisely, let C′ := {j ∈ C | t∗

j < ∞, (djj′ < 0) ∨ (dj′j ≥ 0) for all j′ ∈ C}

be the set of candidates to deferment. Starting with the last j ∈ C′ in π, we accept j as
the event to be delayed with probability p < 1. If j was rejected, we recursively proceed
with the preceding j ∈ C′ in π until some j ∈ C′ was accepted, where we return to the last
j ∈ C′ in π if the first event j ∈ C′ was rejected. The number of iterations follows geometric
distribution Geo(p). Consequently, it suffices to draw a random number z from distribution
Geo(p) and to select the mth element j ∈ C′ in π with m := |C′| − (z − 1) mod |C′|.

E2: Preservation of feasible initial inventories. If the problem instance is feasible
and no deadlines −dj0 < ∞ are imposed on the occurrence of events j ∈ V , Algorithm 1
can only be quitted without feasible schedule if the initial inventory level rk(et, 0) is not
within the bounds Rk and Rk. The reason is that due to constraint t0 = 0, conflicts at
time t = 0 may become unsolvable if r0k /∈ [Rk, Rk]. If such a resource k with infeasible
opening stock exists, we should avoid right-shifting any event l with etl = 0 while removing
an infeasibility at time t > 0. When performing the update of distance matrix D, delaying
event j to time t∗

j leads to an increase of d0l exactly if t∗
j + djl > etl. Accordingly, we

impose the additional condition t∗
j ≤ min{−djl | l ∈ V : etl = 0} on the selection of

event j, provided that at least one event from set C′ satisfies this condition.

E3: Schedule contraction. Despite the additional condition introduced in expansion E2,
we may still encounter situations in which there does not exist any j ∈ C′ when dealing
with a conflict at time t = 0. Since in general r0k 6= 0, it might be useful to synchronize
j = 0 with the next appropriate event i for solving the conflict. In the basic SGS, however,
condition dji ≤ 0 prevents j = 0 from being moved because eti = d0i > 0 contradicts
dji = d0i ≤ 0. Instead of delaying j = 0, the schedule contraction technique performs an
equivalent relative movement between events by left-shifting event i and further events l.
To this end, we put d0l := max{d̂0l, d0l − eti} for all l ∈ V , where d̂0l stands for the initial
earliest occurrence times computed on line 1 of Algorithm 1. Schedule contraction allows
us to entirely avoid premature terminations of the SGS.

E4: Postprocessing. Randomizing the selection of event j reliably prevents long leapfrog-
ging phases. Nevertheless, leapfrogging cannot be avoided completely, and thus the schedule
et yielded by the SGS often fails to be quasiactive (Neumann et al. 2003, Sect. 2.4). In this
case, et can be further compressed by applying the following postprocessing procedure. For
each pair (i, j) with etj ≥ eti and rik ·rjk < 0 for some k ∈ R we put d̂ij := max{d̂ij , 0} and
restore the transitivity of matrix D̂ by applying the Floyd-Warshall algorithm. Since et is
resource-feasible, any schedule t satisfying the temporal constraints tj ≥ ti+d̂ij is feasible as
well. In particular, this holds true for the compressed earliest schedule et

′ = (d̂0j)j∈V ≤ et.

4

4 Computational experiments

We tested the performance of different versions of the SGS using the solvable instances of
the project duration problem with n = 100 events and 5 storage resources from Neumann
and Schwindt (2002). The test set contains 90 randomly generated instances, 57 of which
possess a feasible solution. We considered three types of precedence-feasible permutations π:
the et-list, which orders the events according to nondecreasing earliest occurrence times,
the lt-list, where events are arranged in order of nondecreasing latest occurrence times, and
randomly generated lists. In total, we carried out the four experiments listed in Table 1.

Experiments A to D stepwise introduce extensions E1 to E3 into the basic SGS with
postprocessing E4. For each instance, 100 executions of the SGS are distributed over the
list types as shown in the second column of the table. The CPU time limit was set to 10 ms
per execution, and the smallest project duration found in previous runs was defined as a
deadline. While the randomization in experiment A comes from outside the SGS via the
event lists, the randomization in B to D is implemented inside the SGS via acceptance
probability p < 1 (we chose p = 0.4). The SGS was implemented in Java 11 under Eclipse
and ran on a PC with one core and 4 GHz clock pulse operating under Windows 10.

In the right part of Table 1 we list the mean percentages popt, pfeas, and pno of op-
timally solved, feasibly, but not optimally solved, and unsolved instances averaged over
ten replications for each experiment. ∆opt stands for the relative optimality gap of the
instances solved to feasibility by the respective SGS version. All percentages refer to the
best schedules found for each instance. Symbol tcpu denotes the mean CPU time for 100
runs per instance in seconds.

Table 1. Experimental design and computational results

Experiment #et/#lt/#rand Expansions popt [%] pfeas [%] pno [%] ∆opt [%] tcpu [s]
A 1/1/98 E4 64.4 23.1 12.4 1.12 0.34
B 50/50/0 E1, E4 80.0 10.9 9.1 0.32 0.12
C 50/50/0 E1, E2, E4 91.4 5.8 2.8 0.29 0.16
D 50/50/0 E1 – E4 93.0 5.6 1.5 0.41 0.25

The successive additions of extensions consistently lead to higher percentages of opti-
mally and of feasibly solved instances. In particular, the fully equipped SGS achieves good
results with more than 90 % of instances solved to optimality and a mean optimality gap
of 0.24 %, while the computational effort remains in reasonable order of magnitude.

In a further experiment we ran the SGS with expansions E1, E3 and the et and lt lists
without time limit. As expected, the method delivered a feasible solution to each instance,
which averaged over ten replications took 2.77 s for the et and 0.9 s for the lt list.

References

Carlier J., A. Moukrim, H. Xu, 2009, “The project scheduling problem with production and
consumption of resources: A list-scheduling based algorithm”, Discrete Appl Math, Vol. 157,
pp. 3631–3642.

Carlier J., A. Moukrim, A. Sahli, 2018, “Lower bounds for the event scheduling problem with
consumption and production of resources”, Discrete Appl Math, Vol. 234, pp. 178–194.

Fest A., R. H. Möhring, F. Stork, M. Uetz, 1998, “Resource-constrained project scheduling with
time windows: A branching scheme with dynamic release dates”, Working Paper 596, Fachbe-

reich Mathematik, TU Berlin.
Laborie P., 2003, “Algorithms for propagating resource constraints in AI planning and scheduling:

Existing approaches and new results”, Artif Intell, Vol. 143, pp. 151–188.
Neumann, K., C. Schwindt, 2002, “Project scheduling with inventory constraints”, Math Method

Oper Res, Vol. 56, pp. 513–533.
Neumann, K., C. Schwindt, J. Zimmermann, 2003, “Project Scheduling with Time Windows and

Scarce Resources”. Springer, Berlin
Stork, F., 2001, “Stochastic Resource-Constrained Project Scheduling”. PhD Thesis, TU Berlin

