
INSTITUT F

�

UR WIRTSCHAFTSTHEORIE

UND OPERATIONS RESEARCH

UNIVERSIT

�

AT KARLSRUHE

Lower Bounds for RCPSP/max

Roland Heilmann & Christoph Schwindt

Report WIOR{511

November 1997

TECHNICAL REPORT

Universit�at Karlsruhe

Kaiserstra�e 12, D{76128 Karlsruhe

INSTITUT F

�

UR WIRTSCHAFTSTHEORIE

UND OPERATIONS RESEARCH

UNIVERSIT

�

AT KARLSRUHE

Lower Bounds for RCPSP/max

Roland Heilmann & Christoph Schwindt

Report WIOR{511

November 1997

This research was supported by the Deutsche Forschungsgemeinschaft

(Grant Ne 137/4).

All rights reserved. No part of this publicationmay be reproduced or transmit-

ted in any form or by any means, electronic or mechanical, including photocopy,

recording, or any information storage and retrieval system, without permission

in writing form from the authors.

Abstract. Lower bounds on the optimal objective function value of minimiza-

tion problems play a crucial role for the e�ciency of enumeration algorithms.

Moreover, tight lower bounds allow for an appropriate assessment of heuristic

procedures.

Klein & Scholl (1997) distinguish between two strategies for the computation

of lower bounds for minimization problems: Constructive methods directly cal-

culate a lower bound value by solving a relaxation of a given problem instance.

Destructive improvement techniques restrict the solution space of a problem in-

stance by setting a maximum objective function value and try to contradict the

solvability of this instance by showing that the restricted solution space is empty.

These two strategies have been applied to the resource{constrained project du-

ration problem RCPSP by Klein & Scholl (1997).

In this paper, we devise new preprocessing algorithms and new constructive

lower bounds for RCPSP/max where in addition to RCPSP arbitrary time lags

between the starts of activities may be given. Preprocessing and lower bounds

are used for polynomial destructive improvement algorithms. Preliminary com-

putational results show that the relative deviation of lower bounds from the

corresponding minimal objective function values can be considerably reduced

compared to lower bounds proposed in literature.

Keywords: Lower bound, destructive improvement, resource{constrained project

scheduling, maximum time lags

i

Contents

List of Symbols iii

1 Introduction 1

2 Basic Concepts 3

3 Preprocessing Checks 5

3.1 Conjunctive Preprocessing Check 5

3.2 Disjunctive Preprocessing Checks 7

3.3 Machine Scheduling Preprocessing Check 10

4 Lower Bound Checks 14

4.1 Workload Lower Bound Check . 14

4.2 Active Chain Lower Bound Check 16

5 Computational Results 18

Conclusions 24

References 25

ii

List of Symbols

0 Fictitious source of project network

~

N

b Arc weights of project network

~

N

b

ij

Weight of arc hi; ji in project network

~

N

C

�

max

(P

ijk

) Optimal objective function value of (P

ijk

)

D Distance matrix

d Hypothetical upper bound on minimal S

n+1

d

ij

Length of longest path from node i to node j in network

~

N

d

min

ij

Minimum time lag between activity i and activity j

d

max

ij

Maximum time lag between activity i and activity j

E Set of arcs of project network

~

N

EC

j

Earliest completion time of activity j

ES

j

Earliest start time of activity j

G Undirected graph based on critical set function %

[i; j] Edge between node i and node j in G

hi; ji Arc from node i to node j in project network

~

N

K Set of (renewable) resources

LB Lower bound on minimal S

n+1

LC

j

Latest completion time of activity j

LS

j

Latest start time of activity j

~

N Project network

IN Set of positive integers

IN

0

Set of nonnegative integers

n+ 1 Fictitious sink of project network

~

N

IP(A) Power set of set A

p

j

Processing time (duration) of activity j

p

[�;]

l

Time during which activity l is at least performed within [�;]

p

ij

l

Time during which activity l is at least performed withinW

ij

(S)

p

ijk

l

Processing time of activity l with respect to (P

ijk

)

(P

ijk

) Instance of scheduling problem 1jpmtn; r � 0; q � 0jC

max

� Preprocessing matrix (�

ij

)

i;j2V

�

i!j

Preprocessing matrix after addition of arc hi; ji with b

ij

= p

i

�

1

Infeasibility matrix

IR

+

Set of nonnegative real numbers

IR

0;+

Set of positive real numbers

iii

% Critical set function

q

ij

l

Tail of activity l with respect to (P

ijk

)

r

jk

Usage of resource k by activity j

r

ij

l

Head of activity l with respect to (P

ijk

)

R

k

Capacity of resource k

RF Resource factor of an RCPSP/max instance

RS Resource strength of an RCPSP/max instance

RT Restrictiveness of an RCPSP/max instance

S Vector of start times (schedule)

S Set of feasible schedules (solution space)

S(d) Constrained solution space of an RCPSP/max instance

S

R

Set of resource{feasible schedules

S

T

Set of time{feasible schedules

S

j

Start time of activity j

S

n+1

Project duration

UB Upper bound on minimal S

n+1

V Set of activities including 0 and n+ 1

V

0

Set of (real) activities

V (S; t) Set of activities being executed at time t

V

ij

Set of activities being performed within W

ij

(S)

W

ij

(S) Interval [S

i

; S

i

+ �

ij

]

WL

[�;]

k

Workload being performed on resource k within [�;]

ZZ Set of integers

iv

1 Introduction

For the Resource{Constrained Project Scheduling Problem (RCPSP) a large

number of bounding algorithms can be found in the open literature (cf. e.g.

Christo�des et al. 1987, Demeulemeester & Herroelen 1992, Mingozzi et al. 1994,

and Brucker et al. 1996). Whereas (classical) constructive methods are based on

the solution of relaxations of the optimization problem under consideration, the

destructive improvement approach, introduced by Klein & Scholl (1997), is based

on the rejection of hypothetical upper bounds.

The lower bounds which have been used for the Resource{Constrained Project

Scheduling Problem with Minimum and Maximum time lags (RCPSP/max) so

far rely on the constructive approach. The resource{based bound LBR equals

the maximum ratio of workload and resource capacity. The time{lag based lower

bound LB

0

corresponds to the objective function value of an optimal solution

for the resource relaxation. The tightest lower bound has been proposed by

De Reyck & Herroelen (1996). It corresponds to a generalization of the weighted

node packing bound devised by Mingozzi et al. (1994).

In this paper, we apply destructive improvement to RCPSP/max. Let S be

the solution space of the RCPSP/max instance in question. By assuming that

d 2 IR

+

is a valid upper bound on the minimal project duration we implicitly

restrict S. The corresponding constrained solution space is denoted by S(d).

Applying several tests we try to show that S(d) is empty. Clearly, if we are able

to establish S(d) = ;, i.e., d cannot be a valid upper bound, d+1 is proved to be

a lower bound on the minimal project duration. Moreover, by proving that there

is no d, such that S(d) 6= ;, we show that there is no feasible solution, i.e., S = ;.

Let a project consist of a �nite set V

0

= f1; 2; : : : ; ng of activities and a

�nite set of resources K. The capacity of each resource k 2 K is limited by

R

k

2 IN. Each activity j 2 V

0

has a processing time (duration) p

j

2 IN

0

. Once

an activity has been started, no preemption is allowed. Moreover, while being

performed, each activity j 2 V

0

takes up r

jk

2 IN

0

units of resource k 2 K.

Furthermore, minimum and maximum time lags d

min

ij

2 IN

0

and d

max

ij

2 IN

0

,

respectively, between the starts of two di�erent activities i and j (i; j 2 V

0

) have

to be observed.

By introducing a �ctitious source 0 and a �ctitious sink n + 1 (with p

0

:=

p

n+1

:= 0 and r

0k

:= r

n+1;k

:= 0 (k 2 K)) activities and time lags can be

represented by an AoN{network

~

N = hV;E; bi with node set V :=V

0

[f0; n+ 1g,

arc set E, and arc weights b : E ! ZZ. A minimum time lag d

min

ij

is represented

by an arc hi; ji weighted by b

ij

:= d

min

ij

, whereas a maximum time lag d

max

ij

corresponds to an arc hj; ii weighted by b

ji

:= �d

max

ij

.

1

With V (S; t) := fj 2 V jt� p

j

< S

j

� tg denoting the set of activities being

executed at time t the RCPSP/max can be stated as follows:

Min. S

n+1

s.t.

S

j

� S

i

� b

ij

(hi; ji 2 E) (1)

X

j2V (S;t)

r

jk

� R

k

(k 2 K; t � 0) (2)

S

j

� 0 (j 2 V) (3)

S

0

= 0

The objective is to determine a schedule S = (S

0

; S

1

; : : : ; S

n+1

) of start times

S

j

2 IR

0;+

(j 2 V) such that the minimum and maximum time lags (1) and

resource constraints (2) are met and the start time S

n+1

of the �ctitious sink

n+ 1 (project duration) is minimized.

A schedule S obeying (1) and (3) is called time{feasible. We call a sched-

ule S resource{feasible if it observes (2) and (3). A schedule S which is time{

and resource{feasible is called feasible. We denote the set of all time{feasible

(resource{feasible) schedules by S

T

(S

R

). S = S

T

\ S

R

stands for the set of all

feasible schedules. In the following, we suppose S

T

to be nonempty.

An example for an RCPSP/max instance is given by Figure 1. Activity 5 has

to start 1 unit of time after activity 2 at the earliest and 3 units of time after

activity 2 at the latest.

R

1

= 2

0

0

0

1

3

2

2

1

1

3

2

1

4

2

1

5

1

1

6

3

1

7

0

0

�

�

�

�

��

0

-

1

@

@

@

@

@R

2

-

4

-

1

�

-3

-

6

@

@

@

@

@R

2

-

1

�

�

�

�

��

3

legend:

i

p

i

r

i1

j

p

j

r

j1

-

b

ij

Figure 1: RCPSP/max instance

Clearly, as a generalization of the RCPSP, the RCPSP/max is NP{hard in

the strong sense. Even the feasibility problem is NP{hard in the strong sense

(cf. Bartusch et al. 1988).

The remainder of this paper is organized as follows. Section 2 is devoted to

the basic concepts of our destructive improvement approach. The correspond-

ing algorithms are given in Sections 3 and 4. The results of an experimental

performance analysis are reported in Section 5.

2

2 Basic Concepts

A resource conict occurs within a set A � V of activities if the total resource

requirement of A exceeds the capacity of at least one resource k 2 K, i.e.:

9k 2 K :

X

j2A

r

jk

> R

k

: (4)

A set A ful�lling (4) is called a forbidden set. If there is no real subset A

0

� A

which is forbidden, A is called minimal forbidden set (cf. Bartusch et al. 1988).

Obviously, a time{feasible schedule S is feasible i� there is no minimal forbidden

set for which all activities are processed simultaneously at one point in time.

Let D = (d

ij

)

i;j2V

be the distance matrix with d

ij

being the length of a

longest path from node i to node j (i; j 2 V) in

~

N . D can be computed by the

Floyd{Warshall algorithm (cf. Lawler 1976) in O(jV j

3

) time. The time window

of an activity j (j 2 V) is an interval [ES

j

; LC

j

) which is bounded by the

earliest start time ES

j

and latest completion time LC

j

of activity j. The earliest

completion time EC

j

and latest start time LS

j

are de�ned by EC

j

:= ES

j

+ p

j

and LS

j

:= LF

j

� p

j

, respectively. By setting ES

0

:= 0 and LF

n+1

:= d, earliest

start times and latest completion times of all activities j 2 V can be obtained in

O(jV jjEj) time by network ow algorithms (cf. Elmaghraby 1977).

Based on the above de�nitions we state two necessary conditions for the over-

lapping of the activities in A:

d

ij

< p

i

(i; j 2 A; i 6= j); (5)

ES

j

< LC

i

(i; j 2 A; i 6= j): (6)

Inequalities (5) guarantee that there is a time{feasible schedule S such that

any two activities i; j 2 A overlap in time. Inequalities (6) ensure that there is a

nonempty intersection between the time windows of the activities j 2 A.

A minimal forbidden set A ful�lling (5) and (6) is called a critical set. There

is a time{feasible schedule S with S

n+1

� d such that all activities of a minimal

forbidden set A overlap in time i�A is critical. Thus, when investigating resource

conicts, we can restrict ourselves to critical sets. Let

% : IP(A)! f0; 1g; %(A) =

(

1; ifA is critical

0; otherwise

(7)

be the critical set function.

If we want to show that S(d) is empty we can adopt two di�erent approaches.

First, we generate additional temporal constraints which have to be ful�lled by

any feasible schedule A with S

n+1

� d (preprocessing check) (cf. Section 3).

These constraints are represented by additional arcs which are added to

~

N . If

owing to these additional arcs a cycle of positive length occurs, i.e., d

jj

> 0 for

any j 2 V , we have shown S(d) = ;. Second, we compute constructive lower

bounds LB on the minimal project duration of any schedule S 2 S(d) (lower

bound check) (cf. Section 4). For LB > d we obtain S(d) = ;.

3

In order to classify our preprocessing check algorithms we introduce an

(�; �;){notation: � 2 fcon; disg stands for conjunctive and disjunctive pre-

processing, respectively. Conjunctive preprocessing means that we treat critical

sets for which there is at most one possibility to resolve the underlying resource

conict. Disjunctive preprocessing means that we determine alternative ways to

resolve resource infeasibility. The parameters � and stand for the following:

we examine every set A � V

0

with jAj = �, such that each subset A

0

� A with

jA

0

j = is critical.

The destructive improvement algorithm for RCPSP/max is given by Algo-

rithm 1. The corresponding lower bound value is denoted by LB. By an interval

search within the set fLB

0

; LB

0

+ 1; : : : ; UBg with

UB :=

X

j2V

max

n

p

j

; max

hj;li2E

b

jl

o

(8)

we determine the minimal LB{value, for which S(LB) 6= ;. This can be done by

performing at most 1 + lg

2

(UB � LB

0

+ 1) iterations.

LB := LB

0

UB := UB

start

:=

P

j2V

max

n

p

j

; max

hj;li2E

b

jl

o

d :=

l

LB+UB

2

m

WHILE LB � UB DO

IF d can be rejected by one of the algorithms described in Sec-

tions 3 and 4 THEN

IF d = UB

start

THEN

LB :=1

ELSE

LB := d+ 1

d := max

nl

LB+UB

2

m

; LB

o

END (�IF�)

ELSE

UB := d� 1

d := min

nl

LB+UB

2

m

; UB

o

END (�IF�)

END (�WHILE�)

RETURN LB

Algorithm 1: Determine LB

4

3 Preprocessing Checks

3.1 Conjunctive Preprocessing Check

The (con; 2; 2){preprocessing check investigates every critical set of cardinality

two. The algorithm is partly based on the approaches described in Brucker et

al. (1996), De Reyck & Herroelen (1996), Klein & Scholl (1997), and Schwindt

(1997). For each pair (i; j) (i; j 2 V) with fi; jg being a critical set we evaluate

two necessary conditions in order to �nd out whether activity j can be completed

before the start of activity i.

The �rst condition, which is called time lag condition, is illustrated in Figure 2.

Here, the processing time of activity j (4 units of time) is not larger than the

maximum time lag between the start of activity j and the start of activity i

(5 units of time). Thus, activity j can be completed before the start of activity i.

R

1

= 5; R

2

= 5

i

3

(2,3)

j

4

(4,1)

-

-5

legend:

l

1

p

l

1

(r

l

1

1

; r

l

1

2

)

l

2

p

l

2

(r

l

2

1

; r

l

2

2

)

-

d

l

1

l

2

Figure 2: Time lag condition

The time lag condition can be stated as follows (cf. Brucker et al. 1996 and

De Reyck & Herroelen 1996):

p

j

� �d

ij

: (9)

The second condition is called time window condition. Figure 3 illustrates the

time windows of activity i and activity j. If activity j starts at ES

j

and activity i

at LS

i

, activity j ends after the start of activity i. Therefore, activity j cannot

be completed before the start of activity i.

i

j

-

t

legend:

l

-

t

ES

l

EC

l

LS

l

LC

l

Figure 3: Time window condition

The time window condition can be stated as follows (cf. Brucker et al. 1996):

ES

j

+ p

j

� LS

i

: (10)

5

If at least one of the inequalities (9) and (10) does not hold, activity j cannot

be completed before the start of activity i. Since fi; jg is critical, activity j has

to be started after the completion of activity i, i.e., an arc hi; ji with b

ij

= p

i

can be added to the project network

~

N . In the following, we use a so{called

preprocessing matrix � = (�

ij

)

i;j2V

which reects the (new) lengths of longest

paths from node i to node j (i; j 2 V) after arcs have been added to

~

N . The

preprocessing matrix is initialized by � := D.

In analogy to Brucker et al. (1996) we omit the time window condition by

adding an arc hn + 1; 0i with b

n+1;0

:= �d. For the following, we suppose the

current upper bound d to be represented in this way.

For each activity j 2 V the following equations hold:

ES

j

= �

0j

; (11)

EC

j

= �

0j

+ p

j

; (12)

LS

j

=��

j0

; (13)

LC

j

=��

j0

+ p

j

: (14)

Adding an arc hi; ji with b

ij

= p

i

(i; j 2 V; i 6= j) to

~

N , the resulting pre-

processing matrix, denoted by �

i!j

, can be obtained by Algorithm 2 in O(jV j

2

)

time (cf. Bartusch 1983).

FOR l

1

; l

2

2 V DO

�

i!j

l

1

l

2

:= maxf�

l

1

l

2

; �

l

1

i

+ p

i

+ �

jl

2

g

END (�FOR�)

IF 9l 2 V : �

i!j

ll

> 0 THEN

�

i!j

:= �

1

END (�IF�)

RETURN �

i!j

Algorithm 2: Determine �

i!j

If the insertion of hi; ji leads to a cycle of positive length, i.e., �

i!j

ll

> 0 for

any l 2 V , we set �

i!j

l

1

l

2

:= 1 for all l

1

; l

2

2 V . The corresponding infeasibility

matrix is denoted by �

1

. In that case, the current hypothetical upper bound d

can be refuted.

6

In contrast to the authors cited above, we evaluate the time lag condition for

any pair (i; j) of activities i; j 2 V (i 6= j) until no more arcs can be added. The

pseudo{code of the (con; 2; 2){preprocessing check is provided by Algorithm 3.

stop := FALSE

WHILE stop = FALSE DO

stop := TRUE

FOR i; j 2 V with %(fi; jg) = 1 DO

IF p

j

> ��

ij

THEN

stop := FALSE

� := �

i!j

IF � = �

1

THEN

RETURN FALSE

END (�IF�)

END (�IF�)

END (�FOR�)

END (�WHILE�)

RETURN TRUE

Algorithm 3: (con; 2; 2){preprocessing check

Since at most

jV j(jV j�1)

2

arcs can be added without obtaining a cycle of positive

length, the time complexity is as given by

Proposition 1.

The time complexity of Algorithm 3 is O(jV j

4

).

3.2 Disjunctive Preprocessing Checks

These preprocessing checks are partly based on the approach of Klein & Scholl

(1997). Let A = fj

1

; j

2

; j

3

g be a critical set (cf. Figure 4). In order to obtain a

feasible schedule S, the resource conict corresponding to A has to be solved by

preventing a simultaneous execution of the activities j

1

, j

2

, and j

3

.

The (dis; 3; 3){preprocessing check examines all possibilities to solve the

underlying resource conict. At least two of activities j

1

, j

2

, and j

3

have to

be performed consecutively. There are two possibilities to enforce the consec-

utive execution of two activities j

�

and j

�

(j

�

; j

�

2 A; � 6= �): either we add

7

R

1

= 4; R

2

= 6

j

1

4

(1,2)

j

2

6

(2,1)

j

3

5

(2,2)

legend:

j

�

p

j

�

(r

j

�

1

; r

j

�

2

)

Figure 4: (dis; 3; 3){preprocessing check

an arc hj

�

; j

�

i weighted by p

j

�

or we introduce an arc hj

�

; j

�

i weighted by p

j

�

to

project network

~

N . As A contains three di�erent subsets fj

�

; j

�

g, there are six

alternative possibilities of solving the resource conict induced by A. Each pos-

sibility can be represented by the addition of an arc hj

�

; j

�

i to

~

N corresponding

to preprocessing matrices �

j

�

!j

�

. The minimal matrix

� :=

�

min

j

�

;j

�

2A

�6=�

�

j

�

!j

�

l

1

l

2

�

l

1

;l

2

2V

; (15)

which can be computed in O(jV j

2

) time, represents the constraints which have

to be observed regardless of the way the resource conict is solved. The current

upper bound d can be refuted if we establish for one critical set A that none of

the six possible arcs can be added such that

�

j

�

!j

�

6= �

1

: (16)

The pseudo{code of the (dis; 3; 3){preprocessing check is given by Algorithm 4.

FOR j

1

; j

2

; j

3

2 V with %(fj

1

; j

2

; j

3

g) = 1 DO

FOR l

1

; l

2

2 V DO

�

l

1

l

2

:= min

n

�

j

1

!j

2

l

1

l

2

; �

j

2

!j

1

l

1

l

2

; �

j

1

!j

3

l

1

l

2

; �

j

3

!j

1

l

1

l

2

; �

j

2

!j

3

l

1

l

2

; �

j

3

!j

2

l

1

l

2

o

END (�FOR�)

IF � = �

1

THEN

RETURN FALSE

END (�IF�)

END (�FOR�)

RETURN TRUE

Algorithm 4: (dis; 3; 3){preprocessing check

Proposition 2.

The time complexity of Algorithm 4 is O(jV j

5

).

8

The (dis; 3; 2){preprocessing check treats every set A = fj

1

; j

2

; j

3

g for which

each subset of cardinality two is critical (cf. Figure 5). In other words, we

examine all cliques of cardinality three in an undirected graph G = [V

0

; E

0

] with:

[i; j] 2 E

0

i� %(fi; jg) = 1 (i; j 2 V

0

) (cf. Brucker et al. 1996).

R

1

= 5; R

2

= 3

j

1

3

(4,2)

j

2

4

(2,2)

j

3

5

(1,2)

legend:

j

�

p

j

�

(r

j

�

1

; r

j

�

2

)

Figure 5: (dis; 3; 2){preprocessing check

In analogy to the (dis; 3; 3){preprocessing check, we prevent simultaneous

execution of activities by additional arcs. As each set fj

�

; j

�

g (j

�

; j

�

2 A; � 6= �)

is critical, all activities in A have to be executed one after the other. Since

there are six permutations of the elements in A, we obtain six preprocessing

matrices. As described above, we compute the corresponding minimal matrix.

Each of these matrices results from the addition of two di�erent arcs hj

�

; j

�

i. For

example, if we look at the permutation (j

2

; j

3

; j

1

), the corresponding additional

arcs are hj

2

; j

3

i weighted by p

j

2

and hj

3

; j

1

i weighted by p

j

3

. The pseudo{code of

the (dis; 3; 2){preprocessing check is provided by Algorithm 5.

FOR j

1

; j

2

; j

3

2 V : %(fj

1

; j

2

g) = %(fj

1

; j

3

g) = %(fj

2

; j

3

g) = 1 DO

FOR l

1

; l

2

2 V DO

�

l

1

l

2

:= min

�

�

�

j

1

!j

2

l

1

l

2

�

j

2

!j

3

;

�

�

j

1

!j

3

l

1

l

2

�

j

3

!j

2

;

�

�

j

2

!j

1

l

1

l

2

�

j

1

!j

3

;

�

�

j

2

!j

3

l

1

l

2

�

j

3

!j

1

;

�

�

j

3

!j

1

l

1

l

2

�

j

1

!j

2

;

�

�

j

3

!j

2

l

1

l

2

�

j

2

!j

1

�

END (�FOR�)

IF � = �

1

THEN

RETURN FALSE

END (�IF�)

END (�FOR�)

RETURN TRUE

Algorithm 5: (dis; 3; 2){preprocessing check

Proposition 3.

The time complexity of Algorithm 5 is O(jV j

5

).

9

3.3 Machine Scheduling Preprocessing Check

The machine scheduling preprocessing check relies on the one{machine scheduling

problem 1jpmtn; r � 0; q � 0jC

max

with heads r � 0 and tails q � 0 (cf. Schwindt

1997). A similar approach has been used by Brucker et al. (1997) for the solu-

tion of complex machine scheduling problems by a branch{and{bound algorithm

for a one{machine scheduling problem with minimum and maximum time lags.

Optimal solutions to appropriate instances of 1jpmtn; r � 0; q � 0jC

max

provide

the time which is at least necessary for carrying out activities to be processed

within a given time windowW

ij

(S) := [S

i

; S

i

+�

ij

] (i; j 2 V; i 6= j). For any time

window W

ij

(S) we de�ne a subset of activities V

ij

� V which have to be (at

least partially) performed within W

ij

(S). As illustrated in Figure 6, we obtain

the minimum time p

ij

l

during which an activity l (l 2 V) has to be executed

within W

ij

(S) by

p

ij

l

:= max

n

0;min fp

l

; �

ij

; �

il

+ p

l

; �

lj

g

o

: (17)

The brightly and darkly shaded boxes correspond to the earliest and latest

position of activity j, respectively.

l

-

t

S

i

+ �

il

S

i

S

i

+�

il

+p

l

S

i

+�

ij

��

lj

S

i

+ �

ij

S

i

+�

ij

��

lj

+p

l

Figure 6: Determine p

ij

l

For given pair (i; j) of activities i; j 2 V (i 6= j) and resource k 2 K we de�ne

an instance (P

ijk

) of 1jpmtn; r � 0; q � 0jC

max

as follows. For each activity

l 2 V

ij

we determine an appropriate (resource{dependent) processing time p

ijk

l

,

a head r

ij

l

, and a tail q

ij

l

by

p

ijk

l

:=

p

ij

l

r

lk

R

k

; (18)

r

ij

l

:= maxf0; �

il

g; and q

ij

l

:= maxf0; �

lj

� p

l

g: (19)

The optimal objective function value C

�

max

(P

ijk

) can be computed by the

algorithm of Carlier (1982) in O(jV

ij

j log jV

ij

j) time.

Theorem 1.

The minimal objective function value C

�

max

(P

ijk

) of the 1jpmtn; r � 0; q � 0jC

max

instance (P

ijk

) represents a lower bound on S

j

�S

i

for any feasible schedule S 2 S.

10

Proof.

For a subset I � V

ij

we de�ne

h(I) := min

l2I

r

ij

l

+

X

l2I

p

ijk

l

+min

l2I

q

ij

l

: (20)

Using (18) we obtain

h(I) = min

l2I

r

ij

l

+

P

l2I

p

ij

l

r

lk

R

k

+min

l2I

q

ij

l

(I � V

ij

): (21)

(19) implies

min

l2I

r

ij

l

� min

l2I

(S

l

� S

i

) (22)

and

min

l2I

q

ij

l

� min

l2I

(S

j

� (S

l

+ p

ij

l

)) (I � V

ij

): (23)

Furthermore, for each feasible schedule S and any resource k 2 K, the

workload

P

l2I

p

ij

l

r

lk

requested by set I must not exceed the workload

(max

l2I

(S

l

+ p

ij

l

)�min

l2I

S

l

)R

k

. Due to R

k

> 0 we obtain

P

l2I

p

ij

l

r

lk

R

k

� max

l2I

(S

l

+ p

ij

l

)�min

l2I

S

l

(I � V

ij

): (24)

(22), (23), and (24) imply

h(I) � min

l2I

(S

l

� S

i

) + max

l2I

(S

l

+ p

ij

l

)�min

l2I

S

l

+min

l2I

(S

j

� S

l

� p

ij

l

)

= min

l2I

S

l

� S

i

+max

l2I

(S

l

+ p

ij

l

)�min

l2I

S

l

+ S

j

�max

l2I

(S

l

+ p

ij

l

)

= S

j

� S

i

(I � V

ij

):

(25)

Hence, for any feasible schedule S it holds that

max

I�V

ij

h(I) � S

j

� S

i

: (26)

In Carlier (1982) it has been shown that

C

�

max

(P

ijk

) = max

I�V

ij

h(I): (27)

If C

�

max

(P

ijk

) exceeds the breadth �

ij

of time window W

ij

(S), we add an arc

hi; ji with b

ij

:= C

�

max

(P

ijk

) to

~

N . If after the update of preprocessing matrix

� infeasibility occurs, we can reject the current upper bound value d. The

corresponding pseudo{code is given by Algorithm 6.

11

FOR i; j 2 V with �

ij

> 0 DO

V

ij

:= ;

FOR l 2 V DO

p

ij

l

:= max

n

0;minfp

l

; �

ij

; �

il

+ p

l

; �

lj

g

o

IF p

ij

l

> 0 THEN

V

ij

:= V

ij

[flg

r

ij

l

:= max f0; �

il

g

q

ij

l

:= max f0; �

lj

� p

l

g

END (�IF�)

END (�FOR�)

FOR k 2 K DO

FOR l 2 V

ij

DO

p

ijk

l

:=

p

ij

l

r

lk

R

k

END (�FOR�)

�

ij

:= max

n

�

ij

; C

�

max

(P

ijk

)

o

Update �

IF � = �

1

THEN

RETURN FALSE

END (�IF�)

END (�FOR�)

END (�FOR�)

RETURN TRUE

Algorithm 6: Machine scheduling preprocessing check

Proposition 4.

The time complexity of Algorithm 6 is O(jKjjV j

3

log jV j).

12

Let us consider the example depicted in Figure 7. The breadth of time window

W

ij

(S) equals 4 units of time and set V

ij

consists of activities i; j

0

; and j

00

. The

processing times, heads, and tails are listed by Table 1. Solving (P

ijk

) leads to

C

�

max

(P

ijk

) = 5 (cf. Figure 8). Thus, an arc hi; ji with b

ij

= 5 can be added to

the project network.

R

1

= 3

i

3

1

j

0

4

3

j

00

1

3

j

2

1

-

4�

�

�

�

��

2

@

@

@

@

@R

2

@

@

@

@

@R

2

�

�

�

�

��

2

legend:

l

1

p

l

1

r

l

1

1

l

2

p

l

2

r

l

2

1

-

�

l

1

l

2

Figure 7: Machine scheduling preprocessing check

Table 1: Computation of p

ij

l

; p

ij1

l

; r

ij

l

; and q

ij

l

l p

ij

l

p

ij1

l

r

ij

l

q

ij

l

i maxf0;minf3; 4; 3; 4gg = 3

3�1

3

= 1 maxf0; 0g = 0 maxf0; 1g = 1

j

0

maxf0;minf4; 4; 6; 2gg = 2

2�3

3

= 2 maxf0; 2g = 2 maxf0;�2g = 0

j

00

maxf0;minf1; 4; 3; 2gg = 1

1�3

3

= 1 maxf0; 2g = 2 maxf0; 1g = 1

-

6

t

1 2 3 4 5 6

1

i

j

00

j

0

Figure 8: Gantt chart

13

4 Lower Bound Checks

4.1 Workload Lower Bound Check

Let p

[�;]

l

be the minimum time during which an activity l 2 V has to be executed

within the interval [�;] (cf. Figure 9). We obtain p

[�;]

l

by

p

[�;]

l

:= max

n

0;minfp

l

; � �; �

0l

+ p

l

� �; + �

l0

g

o

: (28)

l

-

t

�

0l

�

�

0l

+ p

l

��

l0

��

l0

+ p

l

Figure 9: Determine p

[�;]

l

p

[�;]

l

r

lk

represents the fraction of workload WL

[�;]

k

:=

P

l2V

p

[�;]

l

r

lk

which has

to be performed on resource k between the points in time � and > �. Note,

that, in contrast to the machine scheduling preprocessing check, � and do not

depend on start times of activities.

If the time

l

WL

[�;]

k

R

k

m

, which is at least necessary for carrying out WL

[�;]

k

on

resource k, exceeds the length � � of interval [�;], d cannot be a valid upper

bound on the minimal project duration.

The workload lower bound check relies on the following unconstrained opti-

mization problem:

max

k2K

max

(�;)2[0;d]

2

>�

WL

[�;]

k

R

k

� (� �)

!

: (29)

Obviously, we can refute d as a valid upper bound, if the optimal objective

function value of (29) is positive. In Schwindt (1997) it has been shown that

(29) can be solved to optimality by the enumeration of the intervals listed in

Table 2. Thus, the number of intervals [�;], which have to be investigated,

is polynomially bounded by O(jV j

2

). The pseudo{code of the workload lower

bound check is provided by Algorithm 7.

14

Table 2: Intervals [�;]

Class [�;] with

(i) [ES

i

; LC

j

] LC

i

� LC

j

; ES

i

� ES

j

(ii) [ES

i

; EC

j

] LC

i

� EC

j

; ES

i

� LS

j

(iii) [ES

i

; ES

j

+ LC

j

� ES

i

] ES

j

� ES

i

� LC

j

; ES

i

+ LC

i

� ES

j

+ LC

j

(iv) [LS

i

; LC

j

] EC

i

� LC

j

; LS

i

� ES

j

(v) [LS

i

; EC

j

] EC

i

� EC

j

; LS

i

� LS

j

(vi) [LS

i

; ES

j

+ LC

j

� LS

i

] ES

j

� LS

i

� LS

j

; ES

i

+ LC

i

� ES

j

+ LC

j

(vii) [ES

i

+ LC

i

� LC

j

; LC

j

] EC

i

� LC

j

� LS

i

; ES

i

+ LC

i

� ES

j

+ LC

j

(viii) [ES

i

+ LC

i

� EC

j

; EC

j

] EC

i

� EC

j

� LC

i

; ES

i

+ LC

i

� ES

j

+ LC

j

FOR k 2 K DO

FOR [�;] given by Table 2 with > � DO

IF

2

6

6

6

WL

[�;]

k

R

�

3

7

7

7

> � � THEN

RETURN FALSE

END (�IF�)

END (�FOR�)

END (�FOR�)

RETURN TRUE

Algorithm 7: Workload lower bound check

Proposition 5.

The time complexity of Algorithm 7 is O(jKjjV j

3

).

15

The workload lower bound check is illustrated by the example depicted in

Figure 10. The minimum time during which the activities j, j

0

, and j

00

have to be

performed within interval [�;] (cf. class (v) in Table 2) is 2, 1, and 2, respectively.

Thus, the workload WL

[�;]

1

with respect to resource 1 is 2 � 1+1 � 4+2 � 2 = 10.

l

WL

[�;]

1

R

1

m

=

l

10

4

m

= 3 yields a lower bound for carrying out WL

[�;]

1

. Since the

length of interval [�;] is 2, the hypothetical upper bound d has been disproved.

R

1

= 4

j

4

1

j

0

4

4

j

00

4

2

-

t

�

j

00

j

0

j legend:

l

p

l

r

l

1

l

-

t

�

0l

�

0l

+p

l

��

l0

��

l0

+p

l

Figure 10: Workload lower bound check

4.2 Active Chain Lower Bound Check

The active chain lower bound check is based on the examination of each clique A

with jAj 2 f2; 3; 4; 5g in an undirected graph G = [V

0

; E

0

] with E

0

as de�ned in

Section 3.2. We check whether the interval [t

1

; t

2

] with

t

1

:= min

j2A

�

0j

and t

2

:= max

j2A

(��

j0

+ p

j

); (30)

which is available for the consecutive execution of any sequence of the activities

included in A (active chain), is large enough. Since any two activities j

�

; j

�

2 A

(� 6= �) have to be performed one after the other, the time which is at least

necessary for the execution of any sequence is given by

P

j2A

p

j

. If the latter

value exceeds the length t

2

� t

1

of [t

1

; t

2

], we can reject d as a valid upper bound

on the minimal project duration (cf. Algorithm 8).

16

FOR A � V : jAj 2 f2; 3; 4; 5g ^ %(fi; jg) = 1 (i; j 2 A; i 6= j) DO

IF

P

j2A

p

j

> max

j2A

(��

j0

+ p

j

)�min

j2A

�

0j

THEN

RETURN FALSE

END (�IF�)

END (�FOR�)

RETURN TRUE

Algorithm 8: Active chain lower bound check

Proposition 6.

The time complexity of Algorithm 8 is O (jV j

5

).

Let us consider the example depicted in Figure 11. The length of the interval

[t

1

; t

2

] equals 4 units of time whereas the processing times of activities j

1

; j

2

; : : : ; j

5

sum up to 5 units of time. Hence, d cannot be a valid upper bound.

-

t

t

1

t

2

j

5

j

4

j

3

j

2

j

1

j

1

1

(4,2)

j

2

1

(2,2)

j

3

1

(1,2)

j

4

1

(0,3)

j

5

1

(5,1)

R

1

= 5; R

2

= 3

legend:

j

�

p

j

�

r

j

�

1

j

�

-

t

�

0j

�

�

0j

�

+p

j

�

��

j

�

0

��

j

�

0

+p

j

�

Figure 11: Active chain lower bound check

17

5 Computational Results

In order to evaluate the performance of the proposed algorithms we have com-

puted lower bound values for the testset SOR96 which has been generated using

ProGen/max (cf. Schwindt 1997). This testset consists of 810 RCPSP/max

instances. 524 instances have a feasible solution.

The control parameters used for the full factorial design of SOR96 are given

by Table 3. For each parameter combination, 10 RCPSP/max instances have

been generated.

Table 3: Parameter setting of SOR96

Parameter Values

jV

0

j 10, 15, 20

RT 0.25, 0.50, 0.65

RF 0.50, 0.75, 1.00

RS 0.00, 0.25, 0.50

The restrictiveness RT reects the degree of parallelity of network

~

N (cf.

Schwindt 1996). With increasing RT the parallelity of

~

N decreases. RT is

de�ned as follows:

RT := 1�

m

d

m

max

d

= 1�

2m

d

jV

0

j(jV

0

j � 1)

: (31)

m

d

and m

max

d

denote the number of disjunctive edges in

~

N and the maximal

number of disjunctive edges in networks with jVj nodes, respectively. There is a

disjunctive edge between node i and node j (i; j 2 V

0

; i 6= j) i� d

ij

= d

ji

= �1.

The resource factor RF corresponds to the average percentage of resources

required per activity (cf. Pascoe 1966):

RF :=

1

jV

0

j

1

jKj

X

j2V

0

X

k2K

(

1; if r

jk

> 0

0; otherwise

(32)

Roughly speaking, the resource strength RS reects the ratio of resource

capacity and resource requirements (cf. Kolisch 1995). RS is obtained by

RS :=

1

jKj

X

k2K

RS

k

: (33)

18

For each resource k 2 K, RS

k

corresponds to the scaling parameter of a convex

combination of a minimal demand r

min

k

and a maximal demand r

max

k

:

R

k

= r

min

k

+RS

k

(r

max

k

� r

min

k

)

with: r

min

k

:= max

j2V

0

r

jk

;

r

max

k

:= max

t�0

X

j2V (ES;t)

r

jk

;

ES := (ES

0

; ES

1

; : : : ; ES

n+1

):

(34)

The relationships between the parameters RT , RF , and RS and the average

computation time �

CPU

of exact RCPSP/max procedures are listed in Table 4

(cf. De Reyck 1995, Sprecher et al. 1995, and Schwindt 1996).

Table 4: Inuence of RT , RF , and RS on �

CPU

Parameter Inuence

RT &

RF %

RS %;&

As indicated by \& ", �

CPU

decreases with increasing RT , because the num-

ber of resource conicts to be solved decreases, too. With increasing RF the

number of possibilities to solve resource conicts and thus �

CPU

increases (\% ").

The relationship which has been observed between RS and �

CPU

is the follow-

ing: the maximal value of �

CPU

is obtained for an RS 2 (0; 1). The reason is,

that for RS = 0 the number of alternatives to resolve resource infeasibilities is

comparatively small and that for RS = 1 there is not any resource conict to be

solved.

By the consecutive execution of the algorithms described in Sections 3 and 4

a lower bound value (LBDI

1

) has been computed for each feasible instance of

SOR96. We compare LBDI

1

to LBR, LB

0

, and the lower bound LB

g

3

proposed

by De Reyck & Herroelen (1996) with respect to the average percentage devia-

tion (�

DEV

) and the maximal percentage deviation (max

DEV

) from the optimal

objective function values. For a given instance, the deviation DEV of a lower

bound value LB from the optimal objective function value S

�

n+1

is given by

DEV :=

S

�

n+1

� LB

S

�

n+1

� 100%: (35)

19

LBR, LB

0

, LB

g

3

, and LBDI

1

have been coded in ANSI C using the MS Visual

C++ 5.0 Developer Studio under the operating system Windows NT 4.0. The

experimental performance analysis has been conducted on an Intel Pentium{

200MHz personal computer with 64 MB RAM. The results of a full factorial

analysis are listed in Tables 5 to 7. For each parameter combination, we provide

�

DEV

and, in parenthesis, max

DEV

. The �rst row corresponds to LBR, the

second row to LB

0

, the third row to LB

g

3

, and the fourth row to LBDI

1

.

Apart from few exceptions, the following (transitive) ranking of the lower

bounds with respect to �

DEV

and max

DEV

can be established:

LBDI

1

� LB

g

3

� LB

0

� LBR (36)

with a � b if lower bound a provides smaller �

DEV

and max

DEV

values than

lower bound b.

For the parameter combinations (RT = 0:25, RF = 0:75, RS = 0:00) and

(RT = 0:25, RF = 1:00, RS = 0:00) characterizing hard instances we obtain

di�erent rankings. For both combinations, LBR turns out to be better than

LB

0

. For the latter combination, LB

g

3

outperforms LBDI

1

.

The average percentage deviation �

DEV

and the average computation time

�

CPU

in seconds for calculating the lower bound values are given in Table 8.

Obviously, the very good performance of LBDI

1

is achieved at the expense of a

relatively large average computation time �

CPU

.

Table 5: RT = 0:25

H

H

H

H

RF RS
0.00 0.25 0.50

32.4 (63.6) 49.2 (79.6) 60.1 (77.4)

0.50 29.4 (43.6) 9.5 (29.6) 1.7 (17.6)

7.8 (16.2) 5.2 (18.9) 0.9 (13.7)

2.3 (14.8) 0.1 (1.4) 0.0 (0.0)

35.0 (65.2) 41.4 (60.7) 54.6 (76.5)

0.75 42.6 (64.4) 10.3 (29.8) 4.1 (23.2)

10.5 (24.4) 6.1 (19.7) 3.6 (23.2)

5.3 (23.6) 0.6 (5.5) 0.1 (1.9)

31.6 (39.2) 33.9 (57.9) 41.4 (73.3)

1.00 44.9 (57.8) 18.5 (43.4) 4.8 (22.9)

5.3 (12.5) 11.5 (29.8) 4.7 (22.9)

11.1 (22.2) 2.9 (16.0) 0.4 (8.4)

20

Table 6: RT = 0:50

H

H

H

H

RF RS
0.00 0.25 0.50

45.8 (60.2) 55.1 (72.6) 63.3 (77.4)

0.50 24.1 (51.3) 10.0 (31.2) 3.3 (21.2)

6.3 (19.1) 5.6 (22.4) 2.0 (21.2)

0.1 (0.8) 0.0 (0.0) 0.3 (8.1)

40.5 (58.9) 47.3 (66.0) 54.4 (73.5)

0.75 33.3 (52.7) 15.3 (40.0) 3.9 (12.5)

9.4 (18.9) 7.8 (23.6) 3.1 (12.5)

1.9 (9.9) 0.4 (5.0) 0.2 (4.6)

34.0 (42.3) 47.6 (64.6) 50.7 (65.0)

1.00 23.8 (40.5) 13.3 (30.8) 5.5 (23.0)

7.0 (16.7) 5.1 (22.8) 4.3 (21.3)

3.6 (7.0) 0.3 (5.3) 0.2 (4.2)

Table 7: RT = 0:65

H

H

H

H

RF RS
0.00 0.25 0.50

51.9 (71.0) 60.9 (75.0) 70.1 (79.9)

0.50 20.3 (46.9) 13.4 (39.4) 3.5 (13.6)

4.6 (17.5) 5.2 (23.1) 1.9 (12.5)

0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

43.5 (61.7) 56.5 (72.3) 64.5 (75.6)

0.75 24.8 (46.2) 14.3 (26.0) 5.7 (18.8)

6.5 (13.9) 5.7 (19.5) 3.0 (14.9)

1.0 (6.6) 0.2 (2.9) 0.0 (1.1)

46.3 (54.4) 54.8 (65.5) 58.4 (72.4)

1.00 21.9 (33.9) 20.3 (44.9) 7.1 (20.0)

6.5 (16.5) 8.0 (37.0) 3.9 (18.1)

0.1 (1.0) 0.4 (4.7) 0.1 (1.8)

Table 8: �

DEV

and �

CPU

for lower bounds

Lower bound �

DEV

�

CPU

LBR 51.6 <0.01

LB

0

11.7 <0.01

LB

g

3

5.0 <0.01

LBDI

1

0.7 0.28

21

Table 9 illustrates the inuence of the parameters RT , RF , and RS on �

DEV

for the four lower bounds. The inuence of these parameters on LB

0

, LB

g

3

, and

LBDI

1

is nearly the same. Whereas the performance of these bounds increases

with increasing RT and increasing RS (\& "), we obtain larger deviations �

DEV

for increasing RF (\% "). Surprisingly, there is no signi�cant inuence of RT on

the goodness of LB

0

(\|"). The results obtained for LBR are quite contrary.

�

DEV

increases with increasing RT (\% "), because the decreasing degree of

parallelity is not taken into account by LBR. Obviously, LBR performs best for

high RF and small RS.

Table 9: Inuence of RT , RF , and RS on �

DEV

Parameter LBR LB

0

LB

g

3

LBDI

1

RT % | & &

RF & % % %

RS % & & &

After having compared LBDI

1

to other lower bounds, we now investigate the

contribution of the components of LBDI

1

to the goodness of this bound. For this

purpose, we have computed lower bound values for SOR96, which are solely based

on one of the algorithms described in Sections 3 and 4. The results are listed in

Tables 10 to 12. Again, the �rst value denotes �

DEV

and the value given in paren-

thesis corresponds to max

DEV

. It turns out, that the performance of the single

algorithms heavily depends on the parameter setting (RT;RF;RS). That is why

all algorithms should be combined in order to obtain a lower bound performing

well for arbitrary instances. Nevertheless, Table 13 shows, that there are large

di�erences in performance and computational e�ort between these algorithms.

Table 10: Variation of RT

Lower bound based on: RT = 0:25 RT = 0:50 RT = 0:65

(con; 2; 2){p.c. 4.7 (43.9) 2.8 (24.8) 2.2 (23.1)

(dis; 3; 3){ and (dis; 3; 2){p.c. 2.2 (31.7) 1.1 (25.0) 0.5 (9.5)

machine scheduling p.c. 9.3 (43.7) 9.0 (34.0) 8.7 (33.7)

workload l.b.c. 8.2 (42.5) 7.2 (36.9) 7.6 (34.6)

active chain l.b.c. 8.2 (42.0) 6.9 (35.9) 7.2 (39.4)

LBDI

1

1.4 (23.6) 0.4 (9.9) 0.1 (6.6)

22

Table 11: Variation of RF

Lower bound based on: RF = 0:50 RF = 0:75 RF = 1:00

(con; 2; 2){p.c. 1.5 (23.1) 4.0 (43.9) 4.8 (40.0)

(dis; 3; 3){ and (dis; 3; 2){p.c. 0.9 (25.0) 1.3 (31.7) 1.9 (26.7)

machine scheduling p.c. 7.4 (33.7) 9.7 (43.7) 10.2 (39.2)

workload l.b.c. 6.2 (33.8) 8.5 (42.5) 8.5 (38.2)

active chain l.b.c. 5.7 (39.4) 8.3 (42.0) 8.6 (37.0)

LBDI

1

0.2 (14.8) 0.7 (23.6) 1.3 (22.2)

Table 12: Variation of RS

Lower bound based on: RS = 0:00 RS = 0:25 RS = 0:50

(con; 2; 2){p.c. 5.5 (43.9) 3.2 (28.2) 2.7 (23.2)

(dis; 3; 3){ and (dis; 3; 2){p.c. 3.1 (31.7) 1.4 (25.0) 0.6 (17.6)

machine scheduling p.c. 17.1 (43.7) 11.7 (35.8) 4.2 (23.0)

workload l.b.c. 19.0 (42.5) 9.3 (34.6) 2.4 (19.7)

active chain l.b.c. 17.5 (42.0) 8.2 (39.4) 3.4 (23.2)

LBDI

1

2.5 (23.6) 0.5 (16.0) 0.2 (8.4)

Table 13: �

DEV

and �

CPU

for LBDI

1

{components

Lower bound based on: �

DEV

�

CPU

(con; 2; 2){p.c. 3.3 <0.01

(dis; 3; 3){ and (dis; 3; 2){p.c. 1.3 0.11

machine scheduling p.c. 9.0 0.09

workload l.b.c. 7.7 0.17

active chain l.b.c. 7.4 <0.01

LBDI

1

0.7 0.28

23

Since �

CPU

may be prohibitively large for the computation of LBDI

1

in every

node of a branch{and{bound tree we propose a second variant (LBDI

2

), which

consists of the components (con; 2; 2){preprocessing, machine scheduling prepro-

cessing, and active chain feasibility check. For machine scheduling preprocessing,

only the time window W

0;n+1

(S) is considered. As can be seen in Table 14, the

average percentage deviation �

DEV

increases to 3:1% but the computation time

can be drastically reduced.

Table 14: Variants

Lower bound �

DEV

�

CPU

LBDI

1

0.7 0.28

LBDI

2

3.1 <0.01

Conclusions

We have presented two approaches for destructive improvement: preprocessing

checks and lower bound checks. Two new polynomial lower bounds for the

RCPSP/max, which are based on di�erent combinations of these algorithms, have

been proposed. The results of a preliminary computational performance analysis

show that the new bounds provide encouraging results compared to lower bounds

which have been used for the RCPSP/max so far.

We suggest the new lower bounds to be used within branch{and{bound algo-

rithms for RCPSP/max and generalizations like the Multi{Mode RCPSP/max.

Moreover, the relationship between lower bound e�ciency within enumeration al-

gorithms and control parameters like problem size, restrictiveness, resource factor,

and resource strength should be investigated. In particular, during enumeration,

expensive bounds might be used on higher levels whereas it seems to be reason-

able to use fast algorithms from a certain critical level on. This level should be

chosen depending on the aforementioned control parameters.

24

References

[1] Bartusch, M. (1983): Optimierung von Netzpl�anen mit Anordnungs-

beziehungen bei knappen Betriebsmitteln, Doctoral Dissertation, University

of Aachen, 56{61

[2] Bartusch, M., M�ohring, R.H., and Radermacher, F.J. (1988): Scheduling

Project Networks with Resource Constraints and Time Windows, Annals of

Operations Research 16, 201{240

[3] Brucker, P., Hilbig, T., and Hurink, J. (1997): A Branch & Bound Algo-

rithm for a Single{Machine Scheduling Problem with Positive and Nega-

tive Time{Lags, Osnabr�ucker Schriften zur Mathematik, Reihe P, No. 179

(revised version), University of Osnabr�uck, to appear in: Discrete Applied

Mathematics

[4] Brucker, P., Schoo, A., and Thiele, O. (1996): A Branch & Bound Algorithm

for the Resource{Constrained Project Scheduling Problem, Osnabr�ucker

Schriften zur Mathematik, Reihe P, No. 178, University of Osnabr�uck,

to appear in: European Journal of Operational Research

[5] Carlier, J. (1982): The One{Machine Sequencing Problem, European Journal

of Operational Research 11, 42{47

[6] Christo�des, N., Alvares{Valdes, R., and Tamarit, J.M. (1987): Project

Scheduling with Resource Constraints: A Branch and Bound Approach,

European Journal of Operational Research 29, 262{273

[7] Demeulemeester, E. and Herroelen, W. (1992): A Branch and Bound Pro-

cedure for the Multiple Resource{Constrained Project Scheduling Problem,

Management Science 38, 1803{1818

[8] De Reyck, B. (1995): On the Use of the Restrictiveness as a Measure

of Complexity for Resource{Constrained Project Scheduling, Onderzoeks-

rapport 9535, University of Leuven, Belgium

[9] De Reyck, B. and Herroelen, W. (1996): A Branch{and{Bound Procedure

for the Resource{Constrained Project Scheduling Problem with General-

ized Precedence Relations, Onderzoeksrapport 9613, University of Leuven,

Belgium

[10] Elmaghraby, S.E. (1977): Activity Networks: Project Planning and Control

by Network Models, Wiley, New York

25

[11] Klein, R. and Scholl, A. (1997): Computing Lower Bounds by Destructive

Improvement | An Application to Resource{Constrained Project Schedul-

ing, Schriften zur quantitativen Betriebswirtschaftslehre 4/97, University of

Darmstadt

[12] Kolisch, R. (1995): Project Scheduling under Resource Constraints: E�cient

Heuristics for Several Problem Classes, Physica{Verlag, Heidelberg, 54{60

[13] Kolisch, R., Sprecher, A., and Drexl, A. (1995): Characterization and Gen-

eration of Resource{Constrained Project Scheduling Problems, Management

Science 41, 1693{1703

[14] Lawler, E.L. (1976): Combinatorial Optimization: Networks and Matroids,

Holt, Rinehart and Winston, New York

[15] Mingozzi, A., Maniezzo, V., Ricciardelli, S., and Bianco, L. (1994): An

Exact Algorithm for Project Scheduling with Resource Constraints Based

on a New Mathematical Formulation, Technical Report 32, Department of

Mathematics, University of Bologna, Italy

[16] Pascoe, T.L. (1966): Allocation of Resources C.P.M., Revue Francaise

Recherche Operationelle 38, 31{38

[17] Schwindt, C. (1996): Generation of Resource{Constrained Project Schedul-

ing Problems with Minimal and Maximal Time Lags, Report WIOR 489,

University of Karlsruhe

[18] Schwindt, C. (1997): Verfahren zur L�osung des ressourcenbeschr�ankten

Projektdauerminimierungsproblems mit planungsabh�angigen Zeitfenstern,

Doctoral Dissertation, University of Karlsruhe

26

