$Title Procurement Planning under Stochastic Yield $Ontext Course: Supply Chain Management Section: 2.6 Procurement in Reverse Suppy Chains Problem: Average-return MDP model for procurement planning under stochastic yield and demand - Data - Author: Christoph Schwindt Date: 03/08/2024 $Offtext scalars dmax maximum demand / 10 / xmax maximum inventory level / 20 / qmax maximum oder quantity / 15 / pi unit variable procurement cost / 5 / h unit holding cost / 1 / k fixed procurement cost / 5 / v unit shortage cost / 20 / par_pD parameter p in distribution of demand / 0.5 / par_pY parameter p in distribution of yield / 0.5 / ; $eval DMAX dmax $eval YMAX qmax $eval XMAX dmax+xmax $eval QMAX qmax sets x number of inventory level (state) / x0*x%XMAX% / q order quantity (action) / q0*q%QMAX% / q_of_x(x,q) feasible order quantities in state x d demand / d0*d%DMAX% / y yield / y0*y%YMAX% / ; alias(x, xPrime) ; parameters val_x(x) inventory level encoded by x val_y(y) yield encoded by y pD(d) probability of demand d pY(q,y) probability of yield y given order quantity q p(x,q,xPrime) transition probability from x to xPrime given action q r(x,q) reward for state x and action q ; val_x(x) = ord(x)-1-dmax ; q_of_x(x,q) = yes ; // due to yields < 1 it may be rewarding to order more than xmax - x + dmax items even though items may be lost pD(d) = binomial(dmax, ord(d)-1)*par_pD**(ord(d)-1)*(1-par_pD)**(dmax-(ord(d)-1)) ; pY(q,y)$(ord(y) le ord(q)) = binomial(ord(q)-1, ord(y)-1)*par_pY**(ord(y)-1)*(1-par_pY)**(ord(q)-(ord(y))) ; r(x,q)$q_of_x(x,q) = -(pi*(ord(q)-1) + h*max(0,val_x(x)) + k*(ord(q)>1) + v*max(0,-val_x(x))) ; p(x,q,xPrime)$q_of_x(x,q) = sum((d,y)$((ord(y) le ord(q)) and (val_x(xPrime) = min(max(val_x(x),0) + (ord(y)-1) - (ord(d)-1), xmax))), pD(d)*pY(q,y)) ;