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ABSTRACT

This paper deals with the resource-constrained projeedidimg problem with partially renewable
resources and general temporal constraints with the @lgetct minimize the project duration. The
consideration of partially renewable resources allowsitegrate the decision about the availability
of a resource for a specific time period into the schedulimg@ss. Together with general temporal
constraints, which permit to establish minimum and maxintime lags between the activities,
even more aspects of real-life projects can be taken intowstc We present a branch-and-bound
algorithm for the stated problem which is based on a sert&dgle-generation scheme. Besides
some consistency tests and lower bounds, which are ingefjiiatthe solution process to improve
the performance, we have also developed techniques whichide to prevent redundancies in the
course of the enumeration. In a comprehensive experimeetibrmance analysis we compare
our exact solution procedure with all available branch-hadnd algorithms from the literature
for partially renewable resources on benchmark test sete ré@sults of the computational study
demonstrate the efficiency of our branch-and-bound alyorit

Keywords Project scheduling Branch and bound Resource-constrained project scheduliiartially renewable
resources Minimum and maximum time lags

1 Introduction

In the field of project scheduling, a great deal of effort hasrbdevoted over the years to renewable resources which
are able to model resources like staff or machines whichssemed to be available in a specific quantity at each point
in time (or period). In this work, we consider a more geneesburce type, which has firstly been introduced under
the term partially renewable resources in the framework pfagect scheduling problem by Bdéttcher et al. (1999).
The corresponding problem, which is denoted by RCRSB/a generalization of the classical resource-constdaine
project scheduling problem (RCPSP). The motivation forekiension of the RCPSP by patrtially renewable resources
stems from the restrictiveness of the renewable resouncwisense that the availability for each time period has
to be fixed in advance, separated from the scheduling proclss limitation is dissolved by partially renewable
resources by assigning the availability of a resource tdipielsubsets of time periods which can be seen to integrate
the decision about the availability of a resource for a dpetime period in the scheduling process. Examples for
the application of the RCPSPEan be found in Bottcher et al. (1999) for the flexible plagnirf lunch breaks in a
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company, in Alvarez-Valdes et al. (2008) for the assignnoémteekend work, or in Alvarez-Valdes et al. (2015) for a
school timetabling problem.

In the last decades, approximation and exact solution droes have been developed for the RCRSIR Bottcher

et al. (1999) and Schirmer (1999), priority rule methodstfe RCPSPY are investigated. The works of Alvarez-

Valdes et al. (2006, 2008, 2015) are devoted to a GRASP andttessearch algorithm, and in Schirmer (1999)
different local-search procedures are considered. To disé &if our knowledge, the only exact solution procedure
for the RCPSPY is given in Béttcher et al. (1999), based on a branch-andwbaypproach developed by Talbot and

Patterson (1978).

For the first time, Watermeyer and Zimmermann (2020) haveneldd the RCPSR by taking minimum and maxi-
mum time lags between the start times of activities into ant@ order to cover more aspects of real-life projects.
Watermeyer and Zimmermann (2020) provide a branch-andbapproach for the problem, denoted by RCPSP/
max-t, which is based on the solution of a resource relaxation @h eumeration node. In this work we present
a branch-and-bound algorithm for the RCPSP/maxhich is based on an alternative enumeration approach which
schedules all activities of the project successively.

The remainder of this paper is organized as follows. Se@ipnovides a formal description of the RCPSP/max-
In Sect. 3 we discuss the enumeration scheme of our brartth@md algorithm, where in Sect. 4 two different
implementations for the branching step are presented. ¢t Seimproving techniques are considered, followed
by Sect. 6 which describes the branch-and-bound procedar8ect. 7 we present the results of a comprehensive
experimental performance analysis and provide some csiocisiin Sect. 8.

2 Problem description

The RCPSP/max-can be represented by an activity-on-node project netWbrkith node set’, covering all activi-
ties of the project, and arc setC V' x V, implying the precedence relationships among them. Eawlitac € V' is
assigned a non-interruptible processing time Z-, and a resource demanf]. € Z-, for each partially renewable
resourcek € R. The temporal constraint for each activity péirj) € E is specified by a start-to-start precedence
relationship and arc weigldt; € Z, meaning that each temporal constraint is giverhy> S; + ¢;;, establishing

a time lag between the start times of activitieand j. In the following we speak of a minimum time lag between
activitiess andj if 6;; > 0 and say that a maximum time lag is giverdjf < 0. The node se¥" := {0,1,...,n + 1}
includes two fictitious activitie8 andn +1, i.e.,py = pr+1 = 0, which represent the beginning and the termination of
the project, respectively. It is assumed that each projadissat time) and is completed before a prescribed deadline
d, e, Sy = 0andS,+1 < d. Inthe remainder of this work, we call a vectér= (S;);cyv with S; € Z>, and

Sp = 0 a schedule and speak of a time-feasible schedule if all tehponstraints are satisfied afd.; < d, where
the set of all time-feasible schedules is denotedby The resource constraints of the RCPSP/maxte given by
the resource capacitigd®, € Zx of all partially renewable resourcésc R, where the availability of each resource
is only limited on a specified subset of all time periods witttie entire planning horizoA;, C {1,2,...,d}. As

a consequence, only the resource consumption of an actiity, := {i € V | r% > 0} over the time periods in
1T have to be taken into account. In order to express the nunflibedime periods il an activity: € V isin
execution, we introduce the so-called resource usgge;) := [|S;, S; + p;] N IIx|. Based on the resource usage, the
resource consumption of a resoukce R by an activityi € V follows directly withr¢, (S;) := r%.(S;) - ré,, so that
the resource constraints can be stated by, r{, (S;) < Ry for all k € R. In the following we call a schedulé
which fulfills all resource constraints a resource-feasfishedule and denote the set of all resource-feasible delsed
by Si. Furthermore, we say that scheddles S is feasible withS := Sr N Sk as the set of all feasible schedules.

The objective of the RCPSP/maxis to determine a feasible sched$é& with the lowest project duration among alll
feasible schedule$S € S which can be stated by

Minimize f(S) = Sn41 P
subjectto S e S )

with f : S — R as the objective function which assigns the project dunatioeach feasible schedute In the
following, we call a feasible schedulg which solves problem (P) an optimal schedule and denotedhefsall
optimal schedules b§S.

It should be noted that there also exist other approachestehpartially renewable resources by assigning multiple
subsets of time periods to each of them with the advantagenodre intuitive connection to resources in real-life
applications (Béttcher et al., 1999). In this work, we usegb-called normalized formulation for partially reneveabl
resources which turned out to be more appropriate for thieatéssues.
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3 Enumeration scheme

In general, the enumeration scheme of a branch-and-bogodtaim specifies the procedure to construct the search
tree or rather implicates how to generate all direct desatisdof a search node. In the following, we present the
enumeration scheme of our branch-and-bound procedurenigicased on a serial schedule-generation procedure
complemented by an unscheduling step. The concept of udslihg is based on the work of Franck et al. (2001),

which provides a serial schedule-generation scheme (S 8)d RCPSP/max, i.e., the RCPSP with general temporal
constraints.

The construction procedure of the directed outtree coardipg to the enumeration scheme of our branch-and-bound
algorithm is described in Algorithm 1. In this procedurecle@numeration node is represented by a (@iiS) with

C C V as the set of all currently scheduled activities, #hds a time-feasible schedule which represents the start
times S; for all activitiesi € C and the earliest time-feasible start times for all not autyescheduled activities

i € V'\ C. To simplify the following explanations, we use so-callatdtl schedules, referring to Definition (2.6.3)

in Neumann et al. (2003), to describe the start times of atleruly scheduled activities for some enumeration node.

Definition 1. S€ := (S;);cc WithC C V and schedulé is called a partial schedule. In case theyf > S;+ 9, for all
(i,4) € ENC xC, partial schedules® is said to be time-feasible and is termed resource-fea#iblg _. 75, (S;) < Ry,
for all £ € R. In compliance with schedules, a time-feasible and resstzasible partial schedul§® is called
feasible. SCV{ withi € V' \ C is said to be the augmentation 8f by activityi and S; is termed time-feasible,
resource-feasible or feasible if partial schedle-{?} is time-feasible, resource-feasible or feasible, respebt

Algorithm 1 outlines the enumeration scheme of our branwiHaound procedure. In the initialization step, the dis-
tance matrixD := (d;; )i, ;ev With d;; as the length of a longest path between activitiasdj in project networkV is
calculated with the Floyd-Warshall algorithm (Ahuja et 4893, Sect. 5.6). Then, the earliest and latest timefksasi
schedules'S and LS are derived and the root nodé, S) is initialized byC := {0} andS := ES, meaning that the
project start is scheduled at tifigso that partial schedul§¢ = (0) with S, = 0 corresponds to the root node. For
the enumeration scheme we use@db store all generated enumeration nodes which have stiktexplored an@

to gather all feasible schedules which have been generatedydhe construction procedure. Accordingly, these sets
are initialized by2 := {(C, S)} and® := 0.

Algorithm 1: Enumeration scheme

Input: Instance of problem RCPSP/max-
Output: Set® of candidate schedules

1 Determine distance matri® = (d;;); jev
2 SetES; :=dy;, LS; := —dypforallie V
3C:={0} S:=ES

Q:={(C,9} @:=0

while 2 # () do

IN

5
6 Remove(C, S) from setQ
7 if C =V then
8 | ®:=dU{S}
9 else
10 Select activityi € C
11 O; = {r € {Si,...,LS;} | r5(S¢) +r5.(1) < Ry forall k € R;}
12 ComputeT; := ReducedSchedulingSet(0;)
13 forall ¢t € T; do
14 Sz/ =t S := (maX(Sj, S{ + dij))jGV
15 if 3j € C: S} > S then
16 | C':=C\{jeC|S]>S;}
17 else
18 | C':=Cu{i}
19 Q:=QuU{(C,95)}
20 return ®
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In each iteration of Algorithm 1 some pdit, S) is removed fronf). In case tha€ # V, some activityi € C from the
set of all not currently scheduled activiti€s= V \ C is chosen. For this activity, all resource-feasible siarest in
{S;,...,LS;} are determined and stored in the so-called schedulin@ sethere the resource-feasibility is ensured
by taking the resource consumptiofi(S¢) := > jec 5 (S;) for each resourcé € R; := {k € R | rd. > 0}

of partial schedule5® into account. In Schirmer (1999, Theorem 9.5) it has alrda@hn shown for the RCPSP/
that in general, the step-wise scheduling of all activitéshe project at their earliest feasible start times dods no
guarantee to obtain an optimal schedule. As a consequelh&@G8& for the RCPSR/in the literature select the
start timet for each not currently scheduled activitye C out of the set of all feasible start times of activity
(which could not be eliminated by consistency tests) (sder®er, 1999; Alvarez-Valdes et al., 2006, 2008, 2015).
In what follows, we show that it is sufficient to consider oalgubset 0B, for some not currently scheduled activity
i € C, so that the generation of at least one optimal scheduldlliggaranteed. As it is shown later on, due to
the maximum time lags between the activities of the projda, restriction of se®, requires the implementation
of an unscheduling step. In the following, we call the reﬁpecsubset the reduced scheduling seBpfwhich is
defined byT; := {r € ©,; | #' € [0,7[NO; : 7% (1) > r¥(7') forall k € R;}. Roughly speaking, by using the
reduced scheduling s&t, a delay of the start tlme of actrvmye C is only accepted if it results in a lower resource
consumption for at least one resoukce R; with respect to all lower start times ;. For the moment, we assume
that the reduced scheduling $gtis given. Later on, we discuss two different algorithms ttregkate T; in Sect. 4.
Based on the reduced scheduling Bgtall direct descendants of enumeration ngdeS) are generated. For each
descendant nodg’, S’), some scheduling timec T; is established as the start tir§¢ of activity ¢, followed by the
update of the earliest time-feasible start times for alivéiets of the project if it is assumed that activitystarts at
time ¢ which is given byS’ := (max(S;, S} + d;;)),jev. Since accordingly, for each start times T; the minimum
time lag to all currently scheduled activities is satisfied,, S; + d;; < ¢ for all j € C, in case that start timeis

not time-feasible there has to be at least one actjvity C with S; — d;; < t. This means that the induced latest
start timeLS;(S;) := S; — d;; of activity i by some activityj € C prevents the time-feasibility of start tinte As a
consequence, in order to achieve the time-feasibilitg’ét{} with .S/ = ¢, all currently scheduled activitigs€ C
with ¢ > LS;(S;) or ratherS} > S; has to be unscheduled which is obtained®y= C \ {j € C|S; > S;}. It
should be noted thdt € C’ is always ensured by < LS; due to the definition 08;. In case that start timeis
time-feasible, which means tha min;cc LS;(S;), activity i is scheduled at start tim& = ¢ which is established
by ¢’ := C U {i}. Finally, after the scheduling or unscheduling step, thecdrdant nodéC’, S’) is stored inQ in
order to be explored in one of the following iterations. Fritia description of the procedure to schedule or unschedule
activities it follows directly that each partlal schedié of an enumeration nod, S) is feasible. Accordingly, in
case that some nod€, S) with C = V is removed front2, scheduleS = S¢ ¢ S is stored in® as a candidate
schedule. After all enumeration nodes have been explored(i = 0, Algorithm 1 terminates and returns sbt
which contains all candidate schedules generated in theseatfi the enumeration procedure.

In what follows, we prove that Algorithm 1 generates at least optimal schedule in finitely many iterations if and
only if there is at least one feasible solution. It should lbéed that the total correctness of Algorithm 1 follows
directly from this proof since each candidate scheduledsifde, i.e.® C S. First of all, Theorem 1, which is based
on Lemmas 1 and 2, states that the enumeration scheme genatrégast the set of all so-called active scheddl§s
where in line with Neumann et al. (2000), we call a feasibleesitileS active if and only if there is no feasible schedule
S’ #£ Swith §” < S,i.e.,S! < S;foralli € V. Since obviously there is at least one optimal schedulewisiactive
for each instance witl$ # (), Theorem 1 implicates the completeness of Algorithm 1, e ) < & N OS # (.
Finally, Lemma 3 establishes that the enumeration schemménates after a finite number of iterations.

Theorem 1. Algorithm 1 generates all active schedules, ile> AS.

Proof. Itis easy to verify that for each active schedfife€ .AS the conditionsS < S andr, (S;) < r}; (S5) for all

j € Cand allk € R; are satisfied witC, S) corresponding to the root node. Accordingly, it followsrfre.emma 1
that there exists at Ieast one path in the enumeration treehah each nod¢C, S) satisfies the conditionS < 5
andrjk( i) < 7 (5¢) forall j € Cand allk € R;, respectively. Since for the generation of any direct dedast
node either the start time; for at least one activity € C is increasedq; > S;) or some activityi € C is scheduled
(C" :== C U {i}), each such path has a finite length. Finally, from the priypefr Algorithm 1 that each generated
scheduleS € @ is feasible and sinc8 < S with S # S would contradict the assumption th#t is active, we can
state that Algorithm 1 generates all active schedules. O

Lemma 1. Let S/ € S be any feasible schedule ang, S) some node corresponding to the enumeration scheme of
Algorithm 1 withC # V, S < S7 andr¥,(S;) < r;fk(Sf) forall j € C and allk € R;. Then there is at least one

direct descendant nod@’, S’) which fulfills the conditionss’ < S/ andr; (57) < r;%k(Sf) forall j € ¢’ and all
ke RJ
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Proof. Leti € C be the selected activity for the generation of the directeedants of enumeration node, S).
First of all, S/ € ©, can easily be derived from; < S/ < LS; andr¢(S€) + 5. (S/) < r¢(ST) < Ry for all
k € R;. SinceS! € ©,, from Lemma 2 we get := min{r € O, | r% (r) < r% (S7)forall k € R;} € T}, so that
t < ST andrt (1) < ru (S7) forall k € R;. Accordingly, considering the direct descendant nodeesponding to
start timet of activity i, S’ < S7 is implied byt < Sif (t+di; < Sl-f +di; < ij for all j € V) and the conditions
i (5%) < r.;-‘k(SJf) forall j € C’ andk € R; are satisfied as well, either if activityis scheduled@ := C U {i}) or
some activities are unscheduled. O

Lemma 2. LetT; be the reduced scheduling set®f C {0, 1,...,d}. ThenT; contains exactly all lowest scheduling
timest € ©; which satisfyrf; (t) < rii (7) foranyr € ©; and allk € R;, i.e.,T; = T} := U, co, {min{7" €
O, |ri(r") <ri(r)foral ke R;}}.

Proof. Consider any start time e T;. From the definition off; it follows directly thatt = min{r € ©; | rj (1) <
ri () forall k € R;}, sothatl; C T is given. Next, letr € ©; andt := min{7’ € ©; |r% (') < r& (r)forall k €
R;} be given and assume¢ T;. Sincet ¢ T; impliest > min{7’ € ©; | r} (') < r} (7)forall k € R;}, which
would contradict the assumption farZ; 2 7;” and thereford’; = T} follows. O

Lemma 3. Algorithm 1 generates at mogt!V! enumeration nodes.

Proof. For the generation of any descendant node in the enumesatieme of Algorithm 1 either the selected activity
i € C is scheduled or the start tinfg of any activityj € C is increased by at least one unit. Since the start time of
each activity is trivially bounded from above by the maximproject duratiord, an upper bound for the maximum
depth of the enumeration tree is givendjy’|. Accordingly, an upper bound for the maximum number of gateet

nodes is given by 2!V taking into consideration that the number of start time;iis bounded from above by O

4 Reduced scheduling set

This section is concerned with the calculation of the redwsmheduling set; of set©®; which contains the resource-
feasible start times of activity € C which is chosen for the augmentation of a partial schedtlén Algorithm 1.
In what follows, we describe two different procedures tacoldteT; := {r € ©; | #7/ € [0,7[NO; : 78 (1) >
rit (') forall k € R;}.

Algorithm 2: Reduced scheduling set (v1)

Input: Scheduling se®;
Output: Reduced scheduling sé&t

1T;:=0 t:=min®; element := true

2 while t < oo do

3 forall 7 € T; do

4 element = false

5 forall k € R; do

6 if ri4 (t) < ry (1) then
7 element := true
8 break

9 if element = false then
10 | break

11 if element = true then

12 | T; =T, U{t}

13 | t:=min{r € ©; |7 >t}
14 return T;

The first procedure is sketched in Algorithm 2, whetin () := oc is defined to simplify the representation. In the
course of the procedure, varialileerves as the start time fro®; which is considered in the current iteration while
the boolean variablelement is used to indicate if start timeis or is not an element df;. The algorithm starts
with an empty sefl; and checks in each iteration for some start tilme O, if there is any start time- € T; with
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ri(t) > ri.(r) forall k € R;. This is done in the procedure by checking for each T; if there is at least one
resourcek € R; with r (t) < . (7). If this is the case for all start times ifj, which means that there is no start
timer e T; with r% (¢) > r% (7) forall k € R, t is added tdl;;. Since all start times € ©; are considered in an
increasing order, the condition that there is no start tineeT; with r} (t) > ;. (7) for all £ € R; implies that there
is also no lower start time i®; satisfying this condition. This can easily be verified byiciog that for each start
timer € ©;, which has not been addedZbin the course of Algorithm 2, there is at least one lower stanre 7' € T;
with 72 (7') < r# (7) for all k € R,. Finally, since for each start tintec ©; which is not added t@;, there is at least
one earlier start time € ©; (7 € T;) with r, () > r} () for all k € R;, we can state that Algorithm 2 is correct or
rather returns the reduced scheduling sebpf

In contrast to Algorithm 2, which in the worst case compahesresource usage of each start time ©, with the
resource usage of all lower start timese T;, the second algorithm to calculafé makes use of insights concerned
with the course of the resource usage of an activity overtéirt imes. In what follows, we show that the course of
the resource usage of any resoukce R; by an activity: € V' is constant within each of a number of time intervals
covering the whole planning horizad := {0, 1,...,d}, whose number is bounded by a polynomial function in the
instance length. As a consequence, itis sufficient to sheredsource usagé, (1) of aresourcé € R, by an activity

1 € V for a polynomially bounded number of timess ¥ C H to be able to calculate the resource usage for any start
timet¢ € H. In the following we calll := {a,a + 1,...,b} C II; witha — 1,b+ 1 ¢ II;, a component ofl; and
denote byifj :=={o|oc ¢ Iy Ao+ 1 € Iy} Us :={o | o € IIy Ao + 1 ¢ II;}) the set of the start (end) times
of all components ifil,. Furthermore, we calh}, (1) := rjj (7 + 1) — r};.(7) the resource usage change of resource
k € R, by activity: € V at start timer. Then in line with Watermeyer and Zimmermann (2020), thatiehs

T+1€Hk/\T+pi+1€Hk = A?]@(T):O

T+1€Hk/\7+pi+1§éﬂk = A;‘k(’r):-l

T+1§ZH;€/\T+pZ-+1€Hk = A;‘k(’r):l

T+1¢Hk/\7+pi+1¢1'[k = A;Lk(’r):o
for each start time- € H imply that it is sufficient to store the resource usages oft@lit timesr € ¥ := {7/ €
H|m elUpyV1'+p; €Uy} withldy :=U; U UL U {0, d} to be able to calculate the resource usage for any start time
7 € H. In order to determine the resource usage of any resauec® ; by activity: € V for any starttimer € H, a

list [%.(¢)] which contains the resource usages ot @l U ordered by increasing values ois determined which can
be used to calculate the resource usage for any starttimél by

rie(T) = rig () + sgn (rif (") = rig (7)) - (7 = )

with 7/ := max{oc € ¥ | o < 7} and7” := min{o € ¥ | o > 7}. Itis easy to verify that the number of start times in
VU is given byO(Z;,) with Z;, as the number of componentslif.

-y

35:63\73\83\93\10?113123‘13 14;153‘

,_
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t

Figure 1: Course of the resource usage over all times of grenptg horizon

In order to illustrate the concept of storing the resourcagasfor a subset of times of the planning horizbrin

a list [r% (¢)], we discuss the example illustrated in Figure 1. The exarsiptevs the resource usage course of a
resourcek € R, by an activity: € V over all start timeg- € H with I, = {3,...,7,12} andp; = 3. The
resource usage’ (7) of start timer = 0 and also the sdil;, are outlined by hatched areas. For this example, we
getU, = Ui U Ug U {0,d} = {2,11} U {7,12} U {0,15} = {0,2,7,11,12,15} so that¥ = {7’ € H |71 €

U U{r" e H|7" +p; € U} ={0,2,7,11,12,15} U {4,8,9,12} = {0,2,4,7,8,9,11,12,15} follows directly.
The start times- € ¥, for which, as explained before, it is sufficient to store tégource usage in a ligt}, (¢)], are
marked by squares in Figure 1.
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Based on the previous explanations, we can now state maraligrthat the planning horizof can be subdivided

in O(Zy) time intervals|a, b] with A%, (7) = A (7 + 1) for all 7 € [a,b[NZ for any activityi € V and resource

k € R;. In the following we say that activity € V has a constant resource usage course of reséuec® ; on any
time interval[a, b] if A} (1) = A¥ (7 + 1) for all 7 € [a,b[NZ. Considering all resourcds € R, of an activity

i € V, it follows directly that there is a polynomially boundedmioer of time intervalsa, b] over the whole planning
horizon H for activity i € V with a constant resource usage course of all resourcesRk;. As an example for a
time interval with a constant course of all resource usagas activity, see the left part of Figure 2. In what follows,
we establish conditions for time intervdls, b] in scheduling se®; with a constant resource usage course over all
resources of activity € V which, as shown later on, are used in Algorithm 3 to calculate

' | | | ' : |
. ! ; ; ; ! - u,maz :
~ L W
T S : : S N Neo : : | pusmaz
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Figure 2: Time interval with a constant course of all reseursages

Lemma 4. Let©; C H be some scheduling set determined in Algorithm 1 for any moently scheduled activity
teCandlet{a,a+1,...,b} C O, witha < bandA}, (') = AY (a) forall 7’ € [a,b[NZ and allk € R; be given.
Then any start time € O, satisfies

' €la,b) N Z:rlh(r)>rk (7)) forall k € R; (1)

if and only if at least one of the conditions
JkeR;:ri(r) < Tfk’mm 2
k1, ko) € R™ x RY toff (1) + s, (1) < Tfk’znm + r;‘k’;m" +b—a (3)

with ™" .= min{r (1) | 7 € [a,b] N Z}, R~ := {k € R; | A% (a) < 0} andRT := {k € R, | A% (a) > 0} is
met.

Proof. First, we show that (1) is satisfied for anye O, if at least one of the conditions (2) or (3) is met. Assume
that (2) is satisfied. Then condition (1) follows directlinee there is at least one resouices R; with r% (1) <

rit.(7') for all 7" € [a,b] N Z. Next we suppose that (3) is satisfied while (2) is not met byt sime . It follows
i, (7) i, (1) <™ + r;‘k’;"m with 73" := max{rj} (1) |7 € [a,b]NZ} = rfk’znm + b — a for at least one
pair (k1,k2) € R~ x R, which can easily be derived from the right part of Figure @yéther with}j,_(7) > rfk’;”m
we getrj, (1) < 7", which implies37’ € [a + 1,b] N Z with 7} (1) = rjj, (7'). Sincerjy, () +rjj, (7") =
rfk’f”” + rfk’;’”" +b—a=:cp, forall 7 € [a,b] N Z (see Figure 2), we get, (1) =i} (7') = cryry — ik, (77)
which leads taj; (1) < ri, (7') with (3). Finally, we can state that (1) is met, singg (7) = rj} (') < 7} (7)
forall 7 € [a, 7'[NZ andry, (7) < riy, (7') < i, (77) forall 77 € [7/,b] N Z.

In the next step, we prove that (1) is not satisfied if neitt®mpr (3) is met. For this, let both conditions (2) and
(3) not be satisfied and (1) > r;;"*" be given for allk € R,. Then (1) is not fulfilled, since} (1) > 7% (a) for

all k € R;. Consequently, it remains to consider that there is at @estresourcé; € R~ with 7, (7) < rj™*"
Since this implies that there is at least one timhe [a +1,b] N Z with rjj, (1) = rj}. (7'), equivalent to the previous
descriptions, we get, (1) > rj;, (7’) for eachk; € R*. Now, we consider timé := max{7’ € [a+1,b]NZ|3k €
R~ vl (1) = ri (7))}, for whichrfy (7) > 74 (7) forall ky € RT andry, (1) > r} (7) forallk; € R~ can
directly be followed. Finally with- (7) > 4™ for all k € R; we can derive that (1) is not satisfied for start time
T sincery (1) > ri (7) forall k € R;. O

In the following we describe the second procedure to caleda for any scheduling se®; which is outlined in
Algorithm 3. As the first procedure, Algorithm 3 starts with ampty reduced scheduling sEt which is comple-
mented in the course of the algorithm. In each iteration pifeeedure operates on a sub8ebf the scheduling set
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Algorithm 3: Reduced scheduling set (v2)

Input: Scheduling se®;
Output: Reduced scheduling sé&}

1Tz-:=® 6::@1'
2 while © # 0 do

3 a = min© b:=a R =0 RT =10

4 if a # ¢®7(a) then

5 R~ = {k € R; | A% (a) < 0}

6 if R~ # () then

7 Rt :={k e R;| A% (a) > 0}

8 forall k € R; do

9 | bir == max{7 | A} (1) = Al (a) forall 7’ € [a,7[NZ}
10 b := min (mingeg, bk, €% (a))
11 forall k € R; do

12 || ™" = minfrf(r) |7 € [a,8] N2}

13 T;:=T; U ([a,b] N O) ©:=0\{a,a+1,...,b} O =10

w,min

14 | forall ke R; 7" >0do

15 | @ :=0'U{reco|ri(r)<ra™"}

16 forall (k1,k2) € R~ x R*T do

17 cr=rE™ ™ b —a

18 0 =0 U{reO|rj (1) +rj, (1) <c}
19 0:=0

20 return T;

©;, where® equals®; at the start of the algorithm. In the following, we call a $et= {s,s + 1,...,e} C ©; a
component 0f9; exactly if s — 1,e + 1 ¢ ©; with s ande as the start and the end time of compon&ntespec-
tively. Furthermore, we denote y?: () the end time of the componeiitin ©; corresponding to start time, i.e.,

7 € I. In each iteration of Algorithm 3, the variablesandb are determined which represent the start and the end
of a time intervala, b] which is completely enclosed in some componémf ©;, which meanda,b] N Z C 1.
First, a is set to the start time of the first component@n, where in case that the end time of the first compo-
nent in ©; is greater than the start time (# ¢®i(a)), the set of all resource € R; with A% (a) < 0 is
determined R ™). If R~ # 0, the set of all resourcek € R; with A% (a) > 0 (R™) is established as well,
followed by the calculation of the greatest possible valyefor each resourcé < R; ensuring a constant re-
source usage course on time interf@lb;,]. Accordingly withb := min (mingeg, bir, €®(a)), a time interval
[a,b] N Z C ©; with a constant resource usage course over all resolércesk; on intervalla, b] is determined.
Otherwise, in case that either = ¢®i(a) or R~ = (), time interval[a, b] with b := a is considered for the fol-
lowing calculations instead. After the minimum resourceages-;""" := min{r% (7) | 7 € [a,b] N Z} on interval
[a,b] for each resourcé € R; has been determined, start timgsa + 1,...,b} N © are added td;. Given
O=0¢={reO,|T>and €[0,alnO; : r¥(r) > ri(r) forallk € R;}, which is ensured by the
procedure in each iteration as shown laterjany] N © = [a,b] N T; (see line 13) can be derived as follows. While
the relation is directly be given by the definition Bf for « = b, the correctness can also be established:fer b,
noticing that the procedure ensures that there is at le@stesource: € R~ with r% (') < r% (7) for each pair
(r,7") € {a,a+1,...,b}? with 7 < 7. In what follows, we prove the correctness of Algorithm 8, ithe procedure
returns the reduced scheduling set&f For this, based on the previous descriptions, it is sufficie show that
0’ = ©*! at the end of each iteration siné&™ = 0% with o = min ™! follows directly if ©2** +# (), which
implies[b + 1,a[NT; = (. First, we can state € ©' < A7/ € [a,b] N ©; : 7% (1) > r (') for all k € R; with ©'

as the outcome of the operations in lines 13-18, where Lemisiaghsidered in case that< b. Thus, giver© = 6¢,

©' = ©*! can directly be derived. Finally, by mathematical induetitaking®; = ©¢ with a = min ©; for ©; # )

in the initialization step into account, we get the corressof Algorithm 3.

The last part of this section is concerned with the time cexipies of both algorithms to calculate the reduced
scheduling set;. For this, we callasef := {s,s+1,...,e} C H\ YT abreakoff C H exactlyifs—1,e+1¢€ T,
where we denote b” the number of breaks itf. In compliance with se®;, we call set/ C T a component off
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precisely ifs — 1,e + 1 ¢ Y. It should be noted that each $8tC H can be stored in memory by a list containing
the start and the end times of all components in an increasithey, which is used for the se®;, © andT; in the
following. First, we take a look on the time complexity of Algthm 2. Noticing that the number of start timesanis
bounded from above by, where each start time is compared with at most all startsipefore, we can easily derive a
maximal number 0®(d?) comparisons between pairs of start times. Since for eaclpanson at mostR | resources
have to be considered, we get a time complexity)¢fi?|R|) for the comparison of the resource usages between all
start times. Furthermore, by using ljsf, (¢)] to determine the resource usage for each start#ien®; and by storing
the resource usages of all start times which are addég tee get a time complexity aD(d?|R| +Z) for Algorithm 2
with Z as the sum of the number of componefjsover all resources € R. Sinced > 7, and thusd|R| > Z is
given, finally we can state a time complexity©fd?|R|) for Algorithm 2. In order to determine the time complexity
of Algorithm 3, we assum®, to be the se® at the start of any iteratioh € Zx. First we consider the operations in
lines 14-18. For both loops, using ligts;, (¢)] for all resource¢ € R; and by storing® by the start and the end times
of all components, we can derive time complexitie€4fR|B%* + T) andO(|R|?B®* + |R|T), respectively. Next,
we can observe that the number of iteration®{8°: + T) by noticing that start time, considering two consecutive
iterations, is either assigned to a following componer®jror skips at least one element in any list, (¢)] of some
resourcek € R;. It should be noted, that in caae# ¢®:(a) andR~ = (), start timea also skips at least one element
in some list[r% ()] since start ime- = min ©2"! — 1 has to satisfyA (1) < 0 for somek € R;. Taking into
account that start time is monotonically increasing over all iterations): (a) can be determined over all iterations
by considering each start and each end time of a componéht & most once. The same applies to the elements of
all lists [r% (t)] to determine set® —, R, valuesb;;, and also the minimum resource usagf¢"" on some interval
[a,b] for all k € R;. Conclusively, observing thdt; is complemented in each iteration @B°>) times, we get a
time complexity ofO(|R|2B°* + |R|Z) for each iteration. Noticing, that the maximal number ofdk®added by
the procedures in lines 14-18 to $&% in each iteration is given b§)(|R|Z), we can state that the maximal number
of breaks to be considered @, in each iteration i€)((B°: + Z)|R|Z). In conclusion, we get a time complexity of
O((B® + I)%|R|*T) for Algorithm 3.

5 Improving techniques

In Watermeyer and Zimmermann (2020) it has already beenrsFava relaxation-based branch-and-bound algorithm
for the RCPSP/max-that the application of consistency tests, lower boundstackniques to avoid redundancies
can have a great impact on the performance. In what follovesextend our enumeration scheme in order to be able
to use the consistency tests and lower bounds which havessicely been applied in Watermeyer and Zimmermann
(2020). As it will be shown later on in Sect. 5.3, the extensibthe enumeration scheme is also used for techniques
to prevent redundancies in the search tree.

For the extension of the enumeration scheme we establisimaiddV; C H for the start timeS; of each activity

1 € V, whereW; contains all possible start times of activitye V, i.e., S; € W;. In line with Definition 1 in
Watermeyer and Zimmermann (2020), we ¢&ll:= (W;);cy with W; C H for alli € V andW, = {0} a start time
restriction and denote bl/; the start time restriction of activity € V. In the following we speak of &/ -feasible
scheduleS if S € Sp(W) :={S € Sr|S; € W, foralli € V} and say that a partial schedu€ is 1V -feasible if
there is at least one schedflee Sp(1W) with S, = S, for all scheduled activities € C. Furthermore, in accordance
with Definition 1, we say that start timé; of any not currently scheduled activitye C is W-feasible exactly if
augmentatiors©“{#} is 1V -feasible. Accordingly, it is established as the earliest possible start time of sotiétgac

i € V, the earliestV-feasible start time of any activityc V can be expressed W5 ; (W, i,t) := (min Sp (W, i,1));
with Sp(W,i,t) := {S € Sy (W) | S; > t}. In the same manner, the latéBtfeasible start time of an activitye V

is given by LS ;(W,i,t) = (maxg‘T(W,z',t))j with Sp(W,i,t) :== {S € Sp(W)|S; < t} if t is assumed to
be the latest possible start time of activitye V. In Watermeyer and Zimmermann (2020), two algorithms have
been introduced which are able to determine the minimaltpdis (W, i,t) and the maximal point afr (W, i, t),
respectively, both with a time complexity 6%(|V'|| E|(B + 1)) with B as the total number of breaksTi¥i. For details,
we refer the reader to Watermeyer and Zimmermann (2020).

The extension of the enumeration scheme is given in Algoridhwhere a start time restrictioff is stored in addition
for each enumeration node, so that each node is given byle {dpS, V). At the beginning of the algorithm,
W, :={ES;,...,LS;} foralli € V ensures that all feasible schedufes S are covered by the set of alf-feasible
schedules in the root node, i.&7 (W) D S. In the further course of the algorithm, recalling th&} represents
the domain of start time;, all start times inl; of some activity; € C are limited toW;. Accordingly, each start
time ¢ € T; which is assigned to activity € C is assured to be an element1df,. In the branching step, in order
to generate a descendant nddg S’, W’), some start time < T; is established as the earliest start time of activity
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Algorithm 4: Extended enumeration scheme

Input: Instance of problem RCPSP/max-
Output: Set® of candidate schedules

1 Determine distance matri® = (d;;); jev
2 ES; :==dy;, LS; := —djpforalli e V

3 W, :={ES,;,...,LS;}foralli e V

4 C:={0} S:=ES

5 Q:={(C,S, W)} d:=0

7 Remove(C, S, W) from setQ

8 if C =V then

9 | @:=0U{S}

10 else

11 Select activityi € C

12 ;== {1 € W; | r¢(S°) +r5.(1) < Ry forall k € R;}
13 ComputeT; := ReducedSchedulingSet(©;)
14 forall ¢t € T; do

15 Sii=t S :=minSp(W,i,5S)

W= (W;\ [0,55)jev

16 if 3j € C: 9 > S then

17 | C"==C\{jeC|S]>S;}

18 else ifS; = t then

19 | C':=Cu{i}

20 Q:=Qu{, 5 W}
21 return @

i € C by settingS! := t. Following, the earliestV -feasible schedul§’ with S’ > S andS! > t is determined. Since
S = (min W;);ev is assured at the start of each iteration, the earliédeasible schedule witlf” > S andS, > ¢ is
obtained byS’ := min §T(W, i,t). Obviously, if there is at least one scheduled actiyity C with ES;(W,4,t) > S;
(8% > Sj), which implies that > LS;(W, j, 5;), start timet of activity 4 is notW-feasible. As a consequence, all
activitiesj € C with S% > S; have to be unscheduled, so that activiyan be schedule/-feasible at start timein
case that = ES;(W,i,t) (S; = t). It should be noted that in general, due to the break¥inS! = ¢ is not assured
even if there is no scheduled activifye C with S% > S;. As a consequence, activitycan only be scheduled’-
feasible at time if S, = ¢. Finally, it should be mentioned that Algorithms 1 and 4 ¢aort exactly the same search
tree if no start time restriction with a break is present ia Whole enumeration tree corresponding to Algorithm 4.
This can directly be derived frommin §T(W, i,t) = (max(S;,t + dij))jev With S = (min W;);ev in case thatV
with W; # () for all : € V does not contain any break.

In what follows, we prove the total correctness of the exéehdnumeration scheme which is closely related to the
proof of the correctness for Algorithm 1. First, Theorem &tet the completeness of the extended enumeration
scheme, where Theorem 2 is based on Lemma 5 which represgeteralization of Lemma 1. Finally, taking into
account that Lemma 3 also applies to Algorihm 4 and that eanHidate schedul& € ® of Algorithm 4 is feasible,

we can state the total correctness of the extended enuoresatieme.

Theorem 2. Algorithm 4 generates all active schedules, i®e> AS.

Proof. See the proof of Theorem 1. O

Lemma 5. Let S/ € S be any feasible schedule an@, S, W) some node corresponding to the enumeration scheme
of Algorithm 4 withC # V, 5 < S/, §7 € Sp(W) andr¥,(S;) < r}*k(ij) forall j € Cand allk € R;. Then
there is at least one direct descendant n¢de S’, W) which fulfills the conditionss’ < S/, Sf € Sr(W’) and

i (8 <y (ST)forall j € C’and allk € R;.

10
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Proof. Equivalent to the proof of Lemma 1, based on Lemma 2, corisiglesome activity; € C selected for the
branching step, there is always a start titne min{r € ©; | rj (1) < r;‘k(Sif) forallk € R;} € T; witht < Sif
andr () < r%(S])forallk € R;. Accordingly, considering the direct descendant nodeesponding to start
time ¢ of activity i, t < S/ andS/ € Sp(W) imply " := minSp(W,4,t) < S/ and hences’ € Sp(W’) with
W' = (W;\ [0, 57])jev. Furthermore, the conditions; (S7) < r;%k(Sf) forall j € ¢’ andk € R; are satisfied
as well, either if activityi is scheduled@ := C U {:}), some activities are unscheduled, or the number of schddul
activities remains unchanged. O

5.1 Lower bounds

The calculation of lower bounds on the objective functiolugdor minimization problems constitutes an integral part
of a branch-and-bound algorithm. In this section, we pretea lower bounds on the project duration which have
been developed in Watermeyer and Zimmermann (2020).

The first lower bound is equal to the earliest time-feasibdgget termination if the start time restrictions of alliaittes
are taken into account. This lower bound can be seen as amsexteof the well-known critical path-based lower
bound, where certain start times of activities are not aidwThe corresponding lower bound is givenb§0™ :=
ES 1 (W) with ES(W) := min S (W) which can be calculated with a time complexity®@f|V'|| E|(B + 1)).

The second lower bounBD™ is determined in a destructive way, which means that a hgboti upper bound

on the project duration is increased as long as it can be slioatrit precludes any feasible solution (Brucker and
Knust, 2003). To determine the destructive lower bou#D™ in any node(C, S, W), a binary search is conducted
on some time intervdlLB0™, UB — 1] with UB as the best solution which has already been found in the eairs
the branch-and-bound proceduredot 1, otherwise. LefLB?, UB] be the time interval which is considered in any
iteration, then the binary search works as follows. Firstupper bound! := [(LB? + UB?)/2] is set, followed
by checking ifd precludes any feasible solution. If this is the cag&an be rejected, which means that interval
[d+ 1, UBY] can be investigated next, whereas otherwise, intéh@f', d — 1] is considered. The procedure to check
if the assumption tha$,, ;1 < d contradicts the existence of any feasible solution is basethe calculation of the
minimum resource consumptions of all resources over ailiies of the project. For this, the late$t-feasible
start imeLS¢(W) := LS;(W,n + 1,d) for each activityi € V is determined, where the total minimum resource
consumption of any resouréec R is given by

ri(Wod) =Y & (W, d),
1€V

with 76 (W, d) := min{ré (1) | 7 € W; N [ES(W), LS{(W)]}. In case thats(W,d) > Ry for at least one
resourcek € R, d is rejected, whereas otherwise it cannot be showndipaecludes any feasible solution. The time

complexity ofO(log(d)(|V||E|(B+1) + |R|B + |V|1)) for the calculation of.BD™ has been shown in Watermeyer
and Zimmermann (2020).

5.2 Consistency tests

Consistency tests have already proven to be crucial for énfoppnance of solution procedures for the RCRSP/
(Alvarez-Valdes et al., 2006, 2008, 2015) and the RCPSR/m@Xatermeyer and Zimmermann, 2020). In what
follows, we outline consistency tests which have alreadyssisively been applied for a relaxation-based branch-and
bound algorithm for the RCPSP/maxin Watermeyer and Zimmermann (2020), where we refer theeretadthis
reference for further details.

In general, a consistency test establishes an implicittcains of a problem if some specified condition is satisfieak. F
all consistency tests we consider, these implicit constisaare unary on the start time of some activity. Accordingly
each consistency test is described by a condition and atreduale on the start time restriction of some activity. In
line with Dorndorf et al. (2000a), each of the following ci®tency tests can be interpreted as a functianapping
any start time restrictioll” to an updated start time restrictidf’ := ~(W') with W/ C W, foralli € V. In order to
evaluate the consistency tests, we use the term fixed pdietedd”’ := ~(W) is said to be the fixed point of some
consistency test if eithdl’”’ = W or at least one start time restriction is empty, il&;, = 0.

The first three consistency tests are based on the tempastramtss; > S; + ¢;; for all (¢, j) € E of problem (P),

so that they could be applied on any project scheduling probhdependent on the considered resource type. The
following two consistency tests are well known and haveaalyebeen applied on project scheduling problems (see,
e.g., Dorndorf et al., 2000b; Alvarez-Valdes et al., 2008)e first (second) test is based on checking for some activity

11
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pair (i, j) € E if the currently lowest (greatest) possible start tig := min W; (W; := max W;) of activity j (i)

is consistent with the lowest (greatest) possible star titm IV; (max W;) of activity 4 (5) with respect to time lag
d;;. The corresponding conditions and reduction rules arengagefollows, where both tests are gathered under the
term temporal-bound consistency test in this work.

Ej <Ei+6ij = W;=W; \ [vai+5ij[
Wi>W;—06;; = Wi:=W;\[W;—dy,00]

One pass of the temporal-bound consistency test check®ttions for each activity paifi, j) € E exactly once.
As it has been shown in Watermeyer and Zimmermann (2020){isted point of the temporal-bound consistency
test can be determined by settifif := W, N [ES;(W,0,0), LS;(W,0,0)] for all i € V with a time complexity of
O(VI[E|(B +1)).

The next consistency test, which is also based on the temgamatraints of problem (P), checks for each possible
start time of some activity whether there even exists ldiyeasible schedule with this start time of the activity. One
pass of the so-called temporal consistency test consitlestme times in the start time restrictions over all adtes.
The corresponding condition and reduction rule for some 8tae ¢t € W, of an activity: € V' is given by

ﬂS S ST(W) S, =t = W,=W; \ {t}

In Watermeyer and Zimmermann (2020) an algorithm has beezlajged to determine the fixed point of the temporal
consistency test with a time complexity 6|V |?| E|(B + 1)). It should be noted that the temporal consistency test
dominates the temporal-bound consistency test in the seasd’! C W for all i € V with W* andW* as the fixed
points of the temporal and the temporal-bound consisteesty tespectively. In the remainder of this work, we call
each start time € W/ of some activitylV -feasible.

Next, we deal with consistency tests which take the resocotsstraintsy -, r5.(S;) < Ry for all & € R of
problem (P) into account, where the temporal constrairgsoaty considered in some of them. All the following
tests have in common that they consider each possible isteriof some activity, where it is checked if the induced
resource consumption of the activity and the minimum conaions of all other activities of the project exceed the
capacity of at least one resource. As it is shown later ongtimsistency tests only differ in the way to calculate the
minimum resource consumptions. First, we consider thealeet resource-bound consistency test which does not
consider any temporal constraint at all. Accordingly, @$sumed that start timteof activity i € V', which is checked

by the consistency test, does not restrict the possibletstas € W; of activity j € V' \ {i}. As a consequence,
the minimum resource consumption of each actiyity V' \ {i} is given by, (W) := min{r§, (7) | T € W;}, so

that the resource-bound consistency test is given by theitbmm

JkeR; :r5(t)+ Z r;f}:m"(W) > Ry,
JEVER\{i}

and the reduction rul®; := W; \ {t}. Thereby one pass can be conducted over all activities aidgbssible start
times with a time complexity o®(|V'|Z + |R|B) as it has been shown in Watermeyer and Zimmermann (2020).

The last two consistency tests can be seen as extensions ofgburce-bound consistency test in the sense that
temporal constraints are used in addition to restrict theside start times of the activities for the calculation loé t
minimum resource consumptions. The following consistetesy makes use of the indirect time lags between

the start times of activity and all activitiesj € V' \ {i}, so that activityj can only be started at timese W; N

[t + d;j,t — dj;]. Consequently, the minimum resource consumption is gi\ye;rfj’lgf"(W, D) := min{r§, (1) | 7 €
W,N[t+d;;, t—d;;]} with distance matridXD := (d;;); jev. The corresponding condition of the so-calBenterval
consistency test for the reduction rifé := W; \ {¢} can be stated by

Jk e R :ri(t) + Z TZPJZ?"(VV, D) > Ry,
JEVE\{i}

where one pass can be conducted with a time complexi€y(0F |?|Z2 + |V||R|B?) (Watermeyer and Zimmermann,
2020).

Finally, the last consistency test restricts the possiiale 8mes to calculate the minimum resource consumptives e
more by taking breaks in the start time restrictions for thtethination of the indirect minimum and maximum time
lags into consideration. For this purpose, algorithms Haen developed in Watermeyer and Zimmermann (2020)

to determine the indirect minimum (maximum) time I&Q(I/V, t) (zi;j(W, t)) between the earliest (latesf)-feasible

12
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start time of some activity € V' and anylW-feasible start time of activity ; € V. By using these time lags, the
minimum resource consumption of any activjtg V' \ {i} can be calculated by
roTt (W, D, D) = min{r$,(r) | T € WI'}
with D andD as matrices to store the minimum and maximum time lagdEfd= ;N [t+cﬁj(m t), t—@j(W, t)].
In line with the consistency tests described before, one pathe so-calledV -interval consistency test is conducted
over the possible start times of all activities, where thedition
FkeR G+ Y. ri"(W,D,D) > Ry
JE€VI\{i}

is used for the reduction rulé’; := W; \ {t}. As itis shown in Watermeyer and Zimmermann (2020), one péss
this test can be conducted with a time complexityfV'|2Z2 + |V |2ZB + |V ||R|B2).

5.3 Pruning the enumeration tree

In this section we present two techniques which are abledioaethe set of schedules which are explored by a node in
the course of the enumeration scheme. For both methods;ahehing step of Algorithm 4 is extended by a procedure
which reduces the start time domain of the branching agtivitshould be noted, that in contrast to methods which
remove generated nodes, the following techniques prune pathe enumeration tree by adding constraints to each
node in the branching step to prevent that parts of the séaretare generated at all. In what follows, in a first step
we develop the two pruning techniques separately from etgr.cAfterwards, we show that the combination of both
methods ensures that each part of the time-feasible regiexplored exactly once in the course of the enumeration
scheme.

The first technique is based on the storage of the resourge wghich is induced by the selected activity and its
start time in the branching step as a lower bound for all pbsstart times of the considered activity. In order to
use the first pruning technique, which we call usage-prasgtechnique (UPT), the branching step of the extended
enumeration scheme is adapted as follows. Before startttind’; is established as the earliest start time of some
activity ¢ € C inline 15 of Algorithm 4, W' := W is initialized andW; := {r € W/ |r¥ (1) > r¥ (¢t) forall k € R;}

is set. Additionally, for all further operations in line 1&art time restrictioWV is replaced by/”’. To show that the
correctness of Algorithm 4 remains if the UPT is used, it ificient to show that Lemma 5 can still be applied. For
this, we extend the proof of Lemma 5 by taking into account the UPT is used. Accordingly, we have to consider
the additional operations in line 15 as described beforet kemin{r € O, |} (1) < rfk(Sf) forallk e R;} € T;

with ¢ < S/ andr (1) < % (S7) forall k € R; be given. Then it can easily be verified thigh € Sp(1W") after

W' .= W is initialized andW, := {r € W} | ri (7) > r} (t)forall k € R;} is set. Equivalent to the proof of
Lemma 5,5" := min Sp(W',i,t) < S* andS7 € Sp(W’) with W' := (W] \ [0, S}[);ev can directly be derived,
where all other points of the proof can be used without anyngha Conclusively, Lemma 5 can still be applied to
Algorithm 4 even if the UPT is used, where the proof of theltotarectness is straightforward. Since the application
of the UPT in Algorithm 4 implies for any nod&, .S, W) and any schedul8’ € S;-(W) that the conditions' < S’
andri; (S;) < rj;.(S}) forall j € C and allk € R; are satisfied, Corollary 1 can directly be derived from Lentma

Corollary 1. Let the UPT be used in Algorithm 4, I8 < S be any feasible schedule, and, S, W) some node
corresponding to the enumeration scheme of Algorithm 4 @ith V and S/ € Sy (W). Then there is at least one
direct descendant nod€’, S, W’) which fulfills the conditiors’ € Sy (W’).

As a consequence of Corollary 1, noticing tlatW') C Sy(W) for some nod€C, S, W) and any of its descendants
(C', S, W"), preciselySr (W) is completely explored by enumeration nqde S, W) and all its descendants. In other
words, there is no descendant node which explores a pare ¢itle-feasible regio which is not a part o8 (W).

It should be noted that due to the unscheduling of activitiesis not assured if the UPT is not applied.

The second pruning technique is based on the considerdttbe cesource usages of all times in the reduced schedul-
ing set which are lower than the established earliest dtaetdf the selected activity in the branching step. To appdy t
second pruning technique, the same extensions as for theétksod are made in line 15 of Algorithm 4, except for the
setting of W/ which is replaced byV; := {r € W/ |37’ € [0,t[NT; : r% (7) > r (7') for all k € R;}. Accordingly,

the second method removes each start tirfrem W/ if there is at least one start timéin the reduced scheduling set

T; which is lower thart and satisfies, (7) > r% (') for all k € R;. Since this implies for each start timec W/

that there is at least one resoufces R; with r (1) < r} (') for eachr’ € [0,t[NT;, we call this method usage-
limitation technique (ULT). In order to show that Lemma 5 &éiti be applied if the ULT is used, the proof of Lemma5
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can be extended in the same way as for the first pruning teasbnichere we only have to replace the settinggf Ac-
cordingly, it remains to show tha&t’ e W/ after/ := {r € W/ |#r/ € [0,4[NT; : r¥ (7) > r¥ (') for all k € R;}

is set witht = min{r € ©; | r% (1) < r% (S7) forall k € R;}. Since the assumptioy ¢ W/ would contradict that

t equalsmin{r € ©; | r},. (1) < r;‘k(S’Z) forall £ € R;}, we can state that Lemma 5 still applies to Algorithm 4 if the
ULT is used. As a consequence, the total correctness of ithgod with the ULT is given as well.

In what follows, we investigate the application of both gngitechniques in Algorithm 4. For this, we consider two
direct descendantg’, S’, W’) and(C"”, S”, W) of any node in the enumeration tree. In addition, we assusie th
both noded4C’, S, W’) and(C”, S”, W) are generated by establishitigandt” with ¢’ < " as the earliest start time
of the branching activity € C, respectively. Considering the specifications of both prgitechniques to reduce the
start time restriction of the branching activit§y/ N W/ = 0 can easily be verified. Sind&/ N W, = § directly
impliesSr(W') N Sp(W") = 0, Corollary 2 follows from Corollary 1.

Corollary 2. Let the UPT and the ULT be used in Algorithm 4, $6t € S be any feasible schedule, and, S, W)
some node corresponding to the enumeration scheme of figo4 withC # V and S/ € Sy(W). Then there is
exactly one direct descendant na@®, S’, W) which fulfills the conditiors” € Sy (W").

From Corollary 2, takingSp(W') C Sp(W) for some nodéC, S, W) and any of its descendant§’, S’, W’) into
account, it can directly be derived that each candidatedkdbés generated exactly once in the enumeration scheme if
both pruning techniques UPT and ULT are used. Furthermaesan state that each part of the time-feasible region is
explored exactly once in the course of the enumeration seheiich can be seen as a prevention of any redundancy
in the search tree.

6 Branch-and-bound algorithm

In this section we present the general framework of our brara-bound algorithm which enables a wide range of
different settings concerned with the construction of thkereeration tree and the application of improving technique
The first part of this section is devoted to the search styatégur branch-and-bound algorithm which determines the
way to construct the enumeration tree. In order to providersgegc framework for the construction of the search tree,
in line with Watermeyer and Zimmermann (2020) we divide tharsh strategy in different parts, called traversing,
branching, generation, and ordering strategy.

For the traversing strategy, which determines the node twohsidered next in the course of the branch-and-bound
algorithm, we have implemented two alternatives. The filtstraative is the well-known depth-first search (DFS),
while the second one is an extension of the DFS which selaftes,a predefined time span, among all not completely
explored nodes with lowest search tree level, a node witlothest bound on the project duration. In the following we
call this traversing strategy, which increases the difieegion of investigated paths in the enumeration tree feiead-
path search (SPS). After some node has been chosen to beselpéxt, the branching strategy determines the activity
which is considered in the branching step. For this, in a $irsp, the so-called eligible sétC C, i.e., the set of all
activities which could be used for the branching step, i®mheined. The first alternative takes all not currently
scheduled activities into consideratiaf) (i.e.,£ := C. In contrast, the other two alternatives, which are bottetias
on a strict order in setV, reduce the se&t, where€ C {i € C| Pred=(i) C C} holds withPred=(i) as the set of alll
direct predecessors of activitye V' in a precedence grafgh~ with V' as the node set and the covering relatiofi<)

of the strict order as the arc set. The strict orders we udgsmiork, have been introduced as distance ordg) énd
cycle order K¢) in Franck et al. (2001) and Neumann et al. (2003, Sect. E&) further details we refer the reader
to those references. In the following, we assume that tigéodi set€ is given. Then in the next step of the branching
strategy, the activity with the best priority valae and the lowest index in sét is selected for the branching step.
Accordingly the branching activity is given by

;= min{i’ € £ |7y = ext
i:=min{i' € & |m; hesﬂh}’

where exte {min, max} indicates if lower (min) or greater (max) priority valueg greferred. In what follows, we
present some priority rules which have shown promisingltegupreliminary tests. First, we deal with priority rules
which have already been discussed in the literature (pekelisch, 1996; Franck et al., 2001) and are concernedd wit
the temporal constraints of the problem. These include @rotrers the latest start time (LST) rule with= L.S; and
the slack time (ST) rule with; = LS; — ES;. For both priority rules we have also tested dynamic vessiohich take
the start time restrictions and the best found solufi@into account which are given by, = LS ”? (W) (LSTd) and

7 = LSYP(W) — ES;(W) (STd) with LS /2 (W) := LS;(W,n + 1, UB — 1). Additionally, we have implemented
a dynamic version of the ST rule (SJdvhich considers the number of start times in the start tiesriction by

m = |[W; N [ES(W), LS Y8 (W)]|. Further rules are given by the total successor (TS) rulk wit= | Reach=(i)|
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and Reach™ (i) as the set of all successors of activitg V in G, the path following (PF) rule with; = I(i) and
I(i) as the maximal number of nodes on any longest directed pamtnrflodez € V ton + 1 in project network\,
and the maximal resource consumption (MRC) rule with=p; >, 7 . m In contrast to the priority rules from the
literature, the following rules make use of the propertiethe partlally renewable resources. For this, the maximal
possible additional resource consumptpmk by an activity in relation to the maximal remaining resoucepacity
R, is considered with

Ry := Ry — r(S€) = Y r5.(W, LS 7P (W).

ieC

We have tested the following two different versions. Thealtohaximal additional relative resource consumption

(TMAR) rule with
d
’f‘-k
7TL = P; é + 17
PIES APy
kER:Ri#0 kER;:Rr=0

and the average maximal additional relative resource copsan (AMAR) rule withm; = =}/|R;| and~; as the
priority value of the TMAR rule.

After the branching activity has been selected for some emation node, the last part of the search strategy is
concerned with the generation and the ordering of the didtestendants. For the generation strategy, we distinguish
between the possibilities either to generate all directeledants (all) or to restrict the number of generated noges b
a maximal value (restr), where one and the same node musblyoss explored more than once. Furthermore, we
have implemented different orders in which all start tinrethie reduced scheduling sEtof branching activityi € £

are considered. The most intuitive alternative for thisstaklways the lowest start time fraf) which has not been
used so far to generate a direct descendant node (LT). Tlee alternative assigns a priority valae to each start
timet € T; and considers all start times in an order of nondecreasing priority values (PV), where éiee broken

on the basis of lower start times. In what follows, we presieatbest priority value we have found so far to order the
start times iril;. The corresponding priority value

Z ikt + — 4 m%x(bzk)(t - ES’L(W))

kER;

with

iy = i)/ R, R A0 b i rd /Ry, if Ry #0
T, otherwise T, otherwise

can be seen as a combination of a priority value which is kigtlated to the TMAR rule and a penalty term which
increases the priority value in a linear fashion based oulifference between start timeand the earliesil/ -feasible
start timeES; (1W). Finally, after all direct descendant nodes have been g&trthe ordering strategy determines the
order in which they are considered in the further course®bttanch-and-bound algorithm. In this work, all generated
descendant nodes are explored in an order of nondecreasireg bounds on the project duration (LB) which has
shown to provide good results in computational experiments

Before we discuss our branch-and-bound algorithm in motaldere have to make some additional notes correspond-
ing to the consistency tests. While until now we have considi@ll consistency tests separately from each other, it
is common practice to apply different consistency testaiikeely until no constraint can be deduced anymore or the
infeasibility of the considered search space is proven,the fixed point is reached. In our branch-and-bound algo-
rithm we consider three different sets of consistency tB8tsI'”, andI''", whereI'? contains the temporal-bound
and the resource-bound consistency t&4t,the temporal-bound and thB-interval consistency test, ardd" the
temporal and théV -interval consistency test. In order to increase the nurobarconsistent start times for each set
of consistency tests, the temporal constréipt, < UB with UB as the project duration of the best found solution
in the course of the branch-and-bound procedure is edtabli® addition. Furthermore, to restrict the computationa
effort, we have used an iteration limit In the following, we denote byg (W) the start time restriction which results

if all consistency tests ifi” are iteratively applied ofi” with an iteration limita. To be able to differentiate between
the possibilities for thé-interval andiV -interval consistency test to use all resources or onlyeseurces which are
demanded by the activity, we use the notauogsW andyﬁ( )[R;], respectively. Furthermore, we use= co

to imply that the fixed point corresponding to $&tis determined.
In what follows, we outline the framework of our branch-amlind procedure which is given in Algorithm 5. It
should be noted, that in order to simplify the presentatiamassume that a depth-first search (DFS) is used and that

all direct descendants of any enumeration node are gedeatitsnce (all). Accordingly, all other alternatives for the
traversing and the generation strategy are omitted. In teiepfart of Algorithm 5, a preprocessing step is performed
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Algorithm 5: Branch-and-bound algorithm

Input: Instance of problem RCPSP/max-
Output: Optimal schedule™

1 Determine distance matri = (d;;); jev

2 ES; :=dy;, LS; := —d; for alieV

3 W;:={ES;,...,LS;}foralli eV

4 Apply preprocessing oil/

5 if Sp(W) = 0 thenterminate § = 0)

6 LBY := min Wit

7C:={0} S:=minSp(W) LB:=LB°
8 O:={(C,S,W,LB)} UB:=d+1

while 2 # () do

©

10 | Remove(C, S, W, LB) from stack2

11 if LB < UB then

12 Apply consistency tests ii” or 'V on W

13 if SYB(W) # (0 then

14 Select activity; € £ and initializeA := )

15 0, := {TGWi |T]2(Sc)—|-7'ick(7') < Ry, for allkeRZ}

16 T; := ReducedSchedulingSet(0©;)

17 while T; # () do

18 Removet from setT; (according to the generation strategy)
19 Sii=t S8 :=minSr(W,i,8;) W' :=(W;\[0,Si])jev
20 Apply consistency tests ii” on W’

21 if SYB(W’) # () then

22 S’ := min Sy (W)

23 if 3j € C: 9 > S then

24 | C"=C\{jeC|S;>S;}

25 else if S} = t then

26 | ¢':==Cu{i}

27 if C' =V then

28 ‘ S*:=8 UB:=8, ., T,:=T;\[t+1,00]

29 else

30 Compute lower bound.B’

31 if LB’ < UB then

32 | A:=AU{(C,S W' LB}

33 Put all nodes from\ on stacki? (according to the ordering strategy)

34 if UB = d+ 1thenterminate § = ()
35 else return S*

on the start time restrictiofl/, for which we calculate the fixed point of sEt” considering all resources, which
means thatV := ~{p(W)[R] is set. In case that the preprocessing step cannot provafdmsibility of the problem
instance & (W) # (), the global lower bound. B¢ is set tomin W,, 1, the upper bound on the minimum project
durationUB is set tod + 1, and the root node is initialized and put on st&kn each iteration, an enumeration node
(C, S, W, LB) is removed from stack and is checked if it could provide a solution with a bettefj@coduration than
UB, i.e.,LB < UB. Inthis case, consistency tests fromEé&tor 'V are applied on the start time restrictioi. If

the consistency tests can show that the considered noddl ésdlascendants cannot generate any feasible schedule
with a better project duration thaiB, i.e.,SZ5 (W) := Sp(W,n+1, UB — 1) = {), the next enumeration nodegh

is considered. Otherwise, based on the branching strategygligible set is determined and the branching activity

i € £ is selected, followed by the initialization @ which is used to store all direct descendants of the coresider
enumeration node. In the next step, analogously to Algaorih the scheduling sé; and the reduced scheduling
setT; are calculated, where the start timesTinare considered in an order depending on the generatioregjrat
Given some start timeé which has been removed frof, ¢ is established as the earliest start time of the branching
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activity, where it should be noted that line 19 of Algorithnt&n be adapted as described in Sect. 5.3 to apply the
pruning techniques UPT and ULT. After the initializatiom¢aupdate) of start time restrictidiy’, the consistency
tests from sef'” are applied ofiV’, where the direct descendant node correspondinig'tds directly pruned from
the enumeration tree 877 (W’) = (). Otherwise, in case that the existence of any feasible stb@uS, (1) with

a better objective function value thdiB cannot be excluded, it is checked if some activities havestarischeduled

or if the branching activity can be scheduled.CIf = V after the scheduling of the branching activity, a new best
feasible solution5* := S’ has been found(/B is set toS, |, and all start times if; which are greater thahare
removed, noticing that they cannot generate any betteibleamlution. Otherwise, the lower bourdids’ is calculated

for the descendant node which can either be givedBy™(W’) or LBD™ (W, ES,,+1(W), UB — 1). In case that
LB’ < UB, the node is added to the lidtwhich is used after the generation of all direct descendasés to put them
on the stacK in an order of nonincreasing values of their lower bouhds. The described procedure reiterates until
there is no enumeration node left to be considered,(Les, 0. In case that/B = d + 1 at the end of the algorithm,
we can state that there is no feasible solution, while otfsernwAlgorithm 5 returns an optimal solutici.

7 Performance analysis

In this section we evaluate the performance of our branchkamund algorithm. For this, we conduct computational
experiments on different benchmark test sets with paytiathewable resources. To provide a comprehensive investi-
gation, we compare our procedure with all available braamett-bound algorithms from the literature for the RCPSP/
max-t and the RCPSR/

The computational experiments have been conducted on astatidn with an Intel Core i7-8700 CPU with a clock
pulse of 3.2 GHz and 64 GB RAM under Windows 10 on a single thr&ae algorithms, we compare with each other
in this section, were all coded in C++ and compiled by the B44sual Studio 2017 C++-compiler.

7.1 General temporal constraints

In the first part of the performance analysis we compare oastcactive branch-and-bound algorithm (CBB) with
the relaxation-based branch-and-bound procedure (RBBYatermeyer and Zimmermann (2020) whose favorable
performance has been shown by a comparison with the mixedenlinear programming solver IBM CPLEX. To the
best of our knowledge, the RBB represents the only brandhbaiind algorithm (BnB) for the RCPSP/mawwhich is
available in the open literature so far. For the comparisaheoCBB with the RBB, we have conducted computational
studies on a benchmark test set which covers instance ghts wi 10, 20, 50, 100, 200 real activities, all of them with

30 partially renewable resources. The benchmark test s€™U®hich is available onlink is an adaptation of the
well-known benchmark test set UBO for the RCPSP/max whichte®n generated by the instance generator ProGen/
max (Schwindt, 1996, 1998). As it is described in Watermeyet Zimmermann (2020), the test sets for the RCPSP/
max-r, which are denoted by UB&F in the following, are the result of a replacement of the rem@e resources by
partially renewable resources which are generated in daoge with the procedure in Schirmer (1999, Sect. 10).

Table 1 provides an overview of the settings we have usech®CBB in the computational experiments depending
on the instance size. While the most terms in Table 1 are inWitie Sect. 6, there are some additional specifications
which are explained in the following. The values in brackef8able 1 give the time span for the scattered path search,
the maximal number of generated nodes in one branching atéipe generation strategy, and the maximal search tree
level on which the sets of consistency tests are applied.vahes in parentheses indicate if lower (min) or greater
(max) priority values or lower bounds are preferred. It $tidne noted that Table 1 lists the settings which have shown
the best balance between the number of instances which beutlved to optimality and whose solvability status
remained open among all settings we have tested.

As it can be seen in Table 1, the restriction of the eligibkefagethe branching step in accordance with strict orders
(<p, <c) is only beneficial for greater instances. Furthermore cthraputational studies reveal that resource-based
priority values are preferable for small instances to de¢texbranching activity, whereas temporal-based or nétwor
based priority values are better suited for greater ingt®ndt is also worth mentioning that the SPS and the usage
of priority values for the generation of direct descendardas (PV) have both a great impact on the performance
for greater instances. Finally, taking a look on the impngviechniques, Table 1 shows that it is beneficial over all
instances to use the UPT and to calculate the fixed pgintn each enumeration node, while additional procedures
can enhance the performance just for a few test sets.

Table 2 shows the performance of the CBB and the RBB, where distinguished between CBB1 and CBB2 to
indicate if the first or the second version to calculate tltriced scheduling séf; is applied (see Algorithms 2 and

https:/iwww.wiwi.tu-clausthal.de/abteilungen/unternehmensforschusgtong/benchmark-instances/
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UBO10" UBO20" UBOS50" UBO100" UBO200"
Traversing strategy DFS SPS[25] SPS[55] SPS [55] SPS[1559]
Branching strategy C,MRC(max) C,MRC(max) =p, STd(min) =c, PF(max) =<c, PF(max)
Generation strategy restr-LT [10] restr-LT [10] restr-PJ [ restr-PV [15] restr-PV [30]
Ordering strategy LB(min) LB(min) LB(min) LB(min) LB(min)
Consistency tests T 15 [Ri2 AF IR 5 wRi2
Lower bound LBD™ LBDT™ LBDT™ LBO™ LBO™
Pruning techniques UPT UPT UPT+ULT UPT+ULT UPT

Table 1: Settings for the performance analysis

3). For the performance analysis, we have used a time lim&06f seconds. The results for the RBB are taken
from Watermeyer and Zimmermann (2020), where the RBB has te=ted on the same workstation under the same
conditions as the CBB. In the first column, Table 2 gives thmiper of instances for which the earliest start time
scheduleES is not optimal (#nTriv), so-called non-trivial instancesline with Alvarez-Valdes et al. (2008). Since
trivial instances can efficiently be solved to optimalityey are excluded from all investigations in the remainder of
this work. The following columns list for each instance d& humber of instances for which an optimal solution
is found and proven to be optimal (#opt), infeasibility iogim (#inf), a feasible solution is found whose optimality
is not proven (#feas) or the solvability status remains g@@pen). Finally, the last two columns show the average
computational time over all instances which are solved tovgity (@p;) and are shown to be infeasiblef").

#nTriv.  #opt  #feas #inf  #open oo B

Dint

CBB1 534 534 159 0 0.067s  0.056s
UBO10" CBB2 693 534 534 159 0 0.068s  0.056s
RBB 534 534 159 0 0.040s  0.004s
CBB1 537 581 40 0 7.846s  0.702s
uUBO20" CBB2 621 535 581 40 0 7.354s  0.721s
RBB 500 578 40 3 8.076s  8.006s
CBB1 183 491 5 31 13.774s 26.827s
UBO50" CBB2 527 183 491 5 31 14.082s 26.911s
RBB 145 486 3 38 8.022s  0.279s
CBB1 85 472 0 12 14.307s -
UBO100" CBB2 484 84 472 0 12 14.527s -
RBB 79 465 0 19 20.681s -
CBB1 93 446 0 20 23.447s -
UBO200" CBB2 466 92 445 0 21 24.419s -
RBB 79 466 0 0 28.271s -

Table 2: Performance of CBB and RBB (3005s)

First, we can observe that CBB1 dominates CBB2 over all itts, even though there is no great difference between
both versions. Based on this, for all following investigat, we assume CBB to be conducted with Algorithm 2 to
calculate the reduced scheduling set. Considering thempeaihce of the CBB and the RBB, Table 2 shows a great
dominance of the CBB for instance sets UBO2WBO50", and UBO100, whereas the RBB is able to solve the
test set UBO10in less computational time. The results for instance set @D are in some way unexpected with
respect to the results for the smaller instances. While thB @GBable to solve more instances to optimality than
the RBB, there are some instances for which the solvabilatus remains open which are shown to be feasible by
the RBB. The reason for this may be suspected in the incrdathe alifficulty to determine if some start time of

a branching activity could lead to a feasible solution whhb tncrease of the number of activities in the project. It
should be noted that this result gives an important imptcafior heuristic procedures concerned with the generation
of feasible solutions for the RCPSP/max-Since the results for the test set UBO2Guggests that serial schedule-
generation schemes which are based on the constructivecaneeas described for the CBB might lack the ability to
find feasible solutions for large instances, generatioesas based on the RBB should be taken into account as well
for schedule-generation procedures.

In order to evaluate the quality of the best found solutiopshie CBB for which the optimality could not be shown,
Table 3 compares the project durations of the best solutitrich have been found within a time limit of 300 seconds
by the CBB with those of the RBB. The first part of Table 3 givesoaerview about the number of instances for
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which a feasible solution has been found by at least ogg) @ by both procedures {#), followed by the number of
instances for which only the CBB §#) or the RBB (#,J) was able to find a feasible solution.

NStaNCe Set e Fow  Fiw  ow o ## #  Op  Ohes

uBO20™ 581 578 3 0 79 37 32 10 -2.37 -1.55%
UBO50™ 491 486 5 0 344 290 38 16 -16.87 -4.74%
UBO100" 472 465 7 0 390 243 31 116 -14.51 -2.42%
uUBO200" 466 446 0 20 372 202 13 157 -7.06 0.49%

Table 3: Comparison of the feasible solutions of CBB with RBBO0 s)

As it can be seen for the test sets UBO20BO507, and UBO100 in Table 3, the CBB is able to find a feasible
solution for more instances than the RBB, where in additttere is no instance for which only the RBB detects
a feasible solution. In contrast, in accordance with theltgesn Table 2, the opposite is the case for the test set
UBO200". In the second part of Table 3, the quality of the feasibleitsmhs are compared with each other. The
first column gives the number of instances for which both pdotes have found a feasible solution, but not both
procedures could verify the optimality fori{#). These instances are subdivided into the number of instawith a
better (#), an equal (#), or a worse (#) found solution by the CBB compared with the solution of tH@ER The

last two columns are concerned with the average deviatibtiegroject durations of the best found solutions by the
CBB to those of the RBB, which are assumed to be giversH}, and S35%, respectively. In the first column, the
average absolute deviatiak®s, := SSB — SR8 over all considered instancesigsy”) is given, while the second
column depicts the average relative deviatidif), := A%, /S5 to the project duration of the best found solution by
the RBB @gse)). The second part of Table 3 shows that the CBB can obtainalverstance sets for more instances
a feasible solution with a better objective function valbart the RBB, where it should be noted that the difference
to the number of instances for which the RBB could find a bettdution decreases with the increase in the instance
size. Furthermore, the last two columns indicate a domieafthe CBB in the sense of a better quality of the found

solutions on average for all instance sets, except for UBD2@r which a positive average relative deviation can be
observed.

In order to illustrate the impact of the improving technigua the performance of the CBB, Table 4 shows the results
for test set UBO20 with a time limit of 300 seconds if the search strategy in adance with Table 1 is applied with
different combinations of the given improving techniqulgsthe first two lines, the results of the CBB are given if it
is conducted without any improving technique, except thatlower bound. B0™ is calculated in any enumeration
node, termed basic version in the following. To investightebenefit to calculate the reduced schedulindglséor

the branching step, in Table 4 the results of two differesidaersions of the CBB are listed which consider the start
times in©; or T;, respectively. In the following lines, the improving teadues from Table 1 are individually added
to the basic version of the CBB, where it can be seen that tiselaetion of the reduced scheduling set as well as all
improving techniques enhance the performance of the CBB avitignificant reduction in the total computing time
tepu-

#opt #feas  #inf #open ooy ok tepu
BnB (basic versior®,) 120 546 3 72 29.134s 49.019s 153,043s
BnB (basic versiof;) 142 560 5 56 25.654s 65.402s 146,170s
+Preprocessing 214 567 22 32 23.165s 0.493s 120,468s
+LBDT™ 222 567 22 32 24408s 1.010s 118,541s
+Consistency tests 343 576 23 22 10.667s 0.363s 80,167s
+UPT 537 581 40 0 7.846s 0.702s 17,442 s

Table 4: Impact of components on the performance for ingtaet UBO20 (300 s)

7.2 Precedence constraints

In this section we investigate the performance of the CBB emchmark test sets for the RCPSPTo evaluate the
performance, the CBB is compared with the RBB and the onlylable BnB for the RCPSR/ (BOT) which has
been developed in Bottcher et al. (1999). Since the origindke for the BOT could not be provided to us, we have
reimplemented the BOT in line with Bottcher (1995) and Blidicet al. (1999). As preliminary tests have shown, the
best results for the BOT are obtained if the feasibility basmiFB1 and FB2 as described in Bottcher et al. (1999) are
used. Hence, we have used both feasibility bounds in all coatipnal experiments on the BOT.
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The first benchmark test set contains 2160 instances witedlGactivities (P18) and 250 instances with 15, 20, 25,
and 30 real activities (PX5 P20r, P25t, P30r), respectively, where all of them have been generated WitheBtially
renewable resources. These test sets have been used irZAWaldes et al. (2006, 2008) for a performance analysis
and were provided to them by the authors of Bottcher et aRg)L9 Table 5 shows the results of an experimental
performance analysis on the Béttcher instances with a fimie df 300 seconds. For the CBB and the RBB we have
used the settings of test set UBO2@xcept for test set P25 for which we have conducted the computational tests
on the CBB with the settings of test set UBO50rable 5 shows that both the CBB and the RBB dominate the BOT
over all instances, while only small differences can be nleskbetween the CBB and the RBB, except that the RBB
tend to show lower computing times.

#nTriv.  #opt  #feas #inf  #open  @oh

cpu
inf

)

CBB 827 827 1281 0 0.056s  0.054s
P10r RBB 2108 827 827 1281 0 0.007s  0.007s
BOT 827 827 1281 0 0.023s  0.023s
CBB 188 188 16 0 1.845s  0.051s
P15r RBB 204 188 188 16 0 2.114s  0.002s
BOT 181 181 16 7 2.727s  0.036s
CBB 139 142 17 6 0.112s  0.052s
P20r RBB 165 139 142 17 6 0.660s  0.002s
BOT 136 139 16 10 3.974s  2.187s
CBB 112 116 14 6 0.109s  0.062s
P25r  RBB 136 112 115 14 7 0.018s  0.010s
BOT 105 111 11 14 0.465s 25.457s
CBB 104 104 8 10 0.072s  0.053s
P30r RBB 122 104 104 8 10 0.029s  0.003s
BOT 98 104 3 15 2.095s  0.196s

Table 5: Performance on the Béttcher benchmark set (300 s)

The second benchmark set for the RCRSRés generated by Schirmer (1999) and has later been extbpdddarez-
Valdes et al. (2006, 2008). The test sets of Schirmer (199&)rc960 instances with 10, 20, 30, and 40 real activities
(j10, j20, j30, j40), respectively, with 30 partially renalle resources. Later, Alvarez-Valdes et al. (2006, 2008¢d

a test set with 960 instances, each of them with 60 real &e84j60) and 30 partially renewable resources. It should
be noted that 9 instances of test set j10 which have beenmtouge infeasible in Schirmer (1999, Sect. 10.4) could
not be provided to us, so that they are not part of the perfocemanalysis. In Table 6, the results of the computational
tests on the Schirmer and Alvarez-Valdes instances ara gwth a time limit of 300 seconds. As for the Bottcher
instances, we have used the settings of test set UB@2Ghe CBB and the RBB for the computational experiments,
with the only exception that the CBB was conducted with thitiregs of UBOS5T for test set j60. Table 6 reveals
that both the CBB and the RBB outperform the BOT for the Schirdilvarez-Valdes benchmark set. Furthermore,
Table 6 shows slightly better results for the CBB comparetiose of the RBB.

#nTriv.  #opt  #feas  #inf  #open ooy o

CBB 803 803 5 0 0.063 0.055
j10 RBB 808 803 803 5 0 0.060 0.052
BOT 802 802 5 1 0.171 0.041
CBB 563 565 0 0 0.906 -
j20 RBB 565 564 565 0 0 1.785 -
BOT 509 561 0 4 6.436 -
CBB 431 453 0 0 3.189 -
j30 RBB 453 427 453 0 0 3.717 -
BOT 345 435 0 18 5.573 -
CBB 347 386 0 0 5.386 -
j40 RBB 386 341 386 0 0 4.103 -
BOT 261 363 0 23 4.376 -
CBB 269 346 0 0 8.476 -
j60 RBB 346 268 346 0 0 2.172 -
BOT 186 309 0 37 2.502 -

Table 6: Performance on the Schirmer-Alvarez-Valdes berack set (300 s)

20



A constructive branch-and-bound algorithm for the RCP&RAm A PREPRINT

8 Conclusions

We have presented a branch-and-bound algorithm (BnB) &oretbource-constrained project scheduling problem with
partially renewable resources and general temporal @ng{RCPSP/max). The enumeration of the BnB is based
on a serial schedule-generation scheme with an unschgduiéip. For the basic procedure of our BnB, we have shown
how domains for the start times can be included to apply ivipgptechniques from the literature. Moreover, we have
developed further techniques to reduce the enumeratienathéch are able to prevent redundancies in the course of
the enumeration.

In a comprehensive performance analysis we have compareexaat solution procedure with all BnB which are
available in the open literature for the RCPSP/maand the RCPSR/ The computational experiments could reveal
a great dominance of our BnB for instances with up to 100 aiets/for the RCPSP/max- Furthermore, the favorable
performance could also be confirmed for instances of the RER &here especially a great dominance over the only
available BnB for the RCPSPLtould be demonstrated.

As the computational experiment has shown, the performahaeBnB for the RCPSP/max-is strongly influenced

by the way to enumerate the candidate solutions. Therefvedgnvestigation of further enumeration schemes seems
to be a promising field for future research, where a partidaleus should be put on the prevention of redundancies
and on an efficient integration of consistency tests.
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