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ABSTRACT

This paper deals with the resource-constrained project scheduling problem with partially renewable
resources and general temporal constraints with the objective to minimize the project duration. The
consideration of partially renewable resources allows to integrate the decision about the availability
of a resource for a specific time period into the scheduling process. Together with general temporal
constraints, which permit to establish minimum and maximumtime lags between the activities,
even more aspects of real-life projects can be taken into account. We present a branch-and-bound
algorithm for the stated problem which is based on a serial schedule-generation scheme. Besides
some consistency tests and lower bounds, which are integrated in the solution process to improve
the performance, we have also developed techniques which are able to prevent redundancies in the
course of the enumeration. In a comprehensive experimentalperformance analysis we compare
our exact solution procedure with all available branch-and-bound algorithms from the literature
for partially renewable resources on benchmark test sets. The results of the computational study
demonstrate the efficiency of our branch-and-bound algorithm.

Keywords Project scheduling· Branch and bound· Resource-constrained project scheduling· Partially renewable
resources· Minimum and maximum time lags

1 Introduction

In the field of project scheduling, a great deal of effort has been devoted over the years to renewable resources which
are able to model resources like staff or machines which are assumed to be available in a specific quantity at each point
in time (or period). In this work, we consider a more general resource type, which has firstly been introduced under
the term partially renewable resources in the framework of aproject scheduling problem by Böttcher et al. (1999).
The corresponding problem, which is denoted by RCPSP/π, is a generalization of the classical resource-constrained
project scheduling problem (RCPSP). The motivation for theextension of the RCPSP by partially renewable resources
stems from the restrictiveness of the renewable resources in the sense that the availability for each time period has
to be fixed in advance, separated from the scheduling process. This limitation is dissolved by partially renewable
resources by assigning the availability of a resource to multiple subsets of time periods which can be seen to integrate
the decision about the availability of a resource for a specific time period in the scheduling process. Examples for
the application of the RCPSP/π can be found in Böttcher et al. (1999) for the flexible planning of lunch breaks in a
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company, in Alvarez-Valdes et al. (2008) for the assignmentof weekend work, or in Alvarez-Valdes et al. (2015) for a
school timetabling problem.

In the last decades, approximation and exact solution procedures have been developed for the RCPSP/π. In Böttcher
et al. (1999) and Schirmer (1999), priority rule methods forthe RCPSP/π are investigated. The works of Alvarez-
Valdes et al. (2006, 2008, 2015) are devoted to a GRASP and a scatter search algorithm, and in Schirmer (1999)
different local-search procedures are considered. To the best of our knowledge, the only exact solution procedure
for the RCPSP/π is given in Böttcher et al. (1999), based on a branch-and-bound approach developed by Talbot and
Patterson (1978).

For the first time, Watermeyer and Zimmermann (2020) have extended the RCPSP/π by taking minimum and maxi-
mum time lags between the start times of activities into account in order to cover more aspects of real-life projects.
Watermeyer and Zimmermann (2020) provide a branch-and-bound approach for the problem, denoted by RCPSP/
max-π, which is based on the solution of a resource relaxation in each enumeration node. In this work we present
a branch-and-bound algorithm for the RCPSP/max-π which is based on an alternative enumeration approach which
schedules all activities of the project successively.

The remainder of this paper is organized as follows. Section2 provides a formal description of the RCPSP/max-π.
In Sect. 3 we discuss the enumeration scheme of our branch-and-bound algorithm, where in Sect. 4 two different
implementations for the branching step are presented. In Sect. 5, improving techniques are considered, followed
by Sect. 6 which describes the branch-and-bound procedure.In Sect. 7 we present the results of a comprehensive
experimental performance analysis and provide some conclusions in Sect. 8.

2 Problem description

The RCPSP/max-π can be represented by an activity-on-node project networkN with node setV , covering all activi-
ties of the project, and arc setE ⊂ V × V , implying the precedence relationships among them. Each activity i ∈ V is
assigned a non-interruptible processing timepi ∈ Z≥0 and a resource demandrdik ∈ Z≥0 for each partially renewable
resourcek ∈ R. The temporal constraint for each activity pair(i, j) ∈ E is specified by a start-to-start precedence
relationship and arc weightδij ∈ Z, meaning that each temporal constraint is given bySj ≥ Si + δij , establishing
a time lag between the start times of activitiesi andj. In the following we speak of a minimum time lag between
activitiesi andj if δij ≥ 0 and say that a maximum time lag is given ifδji < 0. The node setV := {0, 1, . . . , n+ 1}
includes two fictitious activities0 andn+1, i.e.,p0 = pn+1 = 0, which represent the beginning and the termination of
the project, respectively. It is assumed that each project starts at time0 and is completed before a prescribed deadline
d̄, i.e., S0 = 0 andSn+1 ≤ d̄. In the remainder of this work, we call a vectorS = (Si)i∈V with Si ∈ Z≥0 and
S0 = 0 a schedule and speak of a time-feasible schedule if all temporal constraints are satisfied andSn+1 ≤ d̄, where
the set of all time-feasible schedules is denoted byST . The resource constraints of the RCPSP/max-π are given by
the resource capacitiesRk ∈ Z≥0 of all partially renewable resourcesk ∈ R, where the availability of each resource
is only limited on a specified subset of all time periods within the entire planning horizonΠk ⊆ {1, 2, . . . , d̄}. As
a consequence, only the resource consumption of an activityi ∈ Vk := {i ∈ V | rdik > 0} over the time periods in
Πk have to be taken into account. In order to express the number of the time periods inΠk an activityi ∈ V is in
execution, we introduce the so-called resource usageruik(Si) := |]Si, Si + pi]∩Πk|. Based on the resource usage, the
resource consumption of a resourcek ∈ R by an activityi ∈ V follows directly withrcik(Si) := ruik(Si) · r

d
ik, so that

the resource constraints can be stated by
∑

i∈V rcik(Si) ≤ Rk for all k ∈ R. In the following we call a scheduleS
which fulfills all resource constraints a resource-feasible schedule and denote the set of all resource-feasible schedules
by SR. Furthermore, we say that scheduleS ∈ S is feasible withS := ST ∩ SR as the set of all feasible schedules.

The objective of the RCPSP/max-π is to determine a feasible scheduleS∗ with the lowest project duration among all
feasible schedulesS ∈ S which can be stated by

Minimize f(S) = Sn+1

subject to S ∈ S

}
(P)

with f : S 7→ R as the objective function which assigns the project duration to each feasible scheduleS. In the
following, we call a feasible scheduleS which solves problem (P) an optimal schedule and denote the set of all
optimal schedules byOS.

It should be noted that there also exist other approaches to model partially renewable resources by assigning multiple
subsets of time periods to each of them with the advantage of amore intuitive connection to resources in real-life
applications (Böttcher et al., 1999). In this work, we use the so-called normalized formulation for partially renewable
resources which turned out to be more appropriate for theoretical issues.
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3 Enumeration scheme

In general, the enumeration scheme of a branch-and-bound algorithm specifies the procedure to construct the search
tree or rather implicates how to generate all direct descendants of a search node. In the following, we present the
enumeration scheme of our branch-and-bound procedure which is based on a serial schedule-generation procedure
complemented by an unscheduling step. The concept of unscheduling is based on the work of Franck et al. (2001),
which provides a serial schedule-generation scheme (SGS) for the RCPSP/max, i.e., the RCPSP with general temporal
constraints.

The construction procedure of the directed outtree corresponding to the enumeration scheme of our branch-and-bound
algorithm is described in Algorithm 1. In this procedure, each enumeration node is represented by a pair(C, S) with
C ⊆ V as the set of all currently scheduled activities, andS as a time-feasible schedule which represents the start
timesSi for all activities i ∈ C and the earliest time-feasible start times for all not currently scheduled activities
i ∈ V \ C. To simplify the following explanations, we use so-called partial schedules, referring to Definition (2.6.3)
in Neumann et al. (2003), to describe the start times of all currently scheduled activities for some enumeration node.

Definition 1. SC := (Si)i∈C with C ⊆ V and scheduleS is called a partial schedule. In case thatSj ≥ Si+δij for all
(i, j) ∈ E∩C×C, partial scheduleSC is said to be time-feasible and is termed resource-feasibleif

∑
i∈C r

c
ik(Si) ≤ Rk

for all k ∈ R. In compliance with schedules, a time-feasible and resource-feasible partial scheduleSC is called
feasible. SC∪{i} with i ∈ V \ C is said to be the augmentation ofSC by activity i andSi is termed time-feasible,
resource-feasible or feasible if partial scheduleSC∪{i} is time-feasible, resource-feasible or feasible, respectively.

Algorithm 1 outlines the enumeration scheme of our branch-and-bound procedure. In the initialization step, the dis-
tance matrixD := (dij)i,j∈V with dij as the length of a longest path between activitiesi andj in project networkN is
calculated with the Floyd-Warshall algorithm (Ahuja et al., 1993, Sect. 5.6). Then, the earliest and latest time-feasible
schedulesES andLS are derived and the root node(C, S) is initialized byC := {0} andS := ES , meaning that the
project start is scheduled at time0, so that partial scheduleSC = (0) with S0 = 0 corresponds to the root node. For
the enumeration scheme we use setΩ to store all generated enumeration nodes which have still tobe explored andΦ
to gather all feasible schedules which have been generated during the construction procedure. Accordingly, these sets
are initialized byΩ := {(C, S)} andΦ := ∅.

Algorithm 1: Enumeration scheme

Input: Instance of problem RCPSP/max-π
Output: SetΦ of candidate schedules

1 Determine distance matrixD = (dij)i,j∈V

2 SetES i := d0i, LS i := −di0 for all i ∈ V
3 C := {0} S := ES
4 Ω := {(C, S)} Φ := ∅

5 while Ω 6= ∅ do
6 Remove(C, S) from setΩ
7 if C = V then
8 Φ := Φ ∪ {S}
9 else

10 Select activityi ∈ C̄
11 Θi := {τ ∈ {Si, . . . ,LS i} | r

c
k(S

C) + rcik(τ) ≤ Rk for all k ∈ Ri}
12 ComputeTi := ReducedSchedulingSet(Θi)
13 forall t ∈ Ti do
14 S′

i := t S′ := (max(Sj , S
′
i + dij))j∈V

15 if ∃j ∈ C : S′
j > Sj then

16 C′ := C \ {j ∈ C | S′
j > Sj}

17 else
18 C′ := C ∪ {i}
19 Ω := Ω ∪ {(C′, S′)}
20 return Φ

3
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In each iteration of Algorithm 1 some pair(C, S) is removed fromΩ. In case thatC 6= V , some activityi ∈ C̄ from the
set of all not currently scheduled activities̄C := V \ C is chosen. For this activity, all resource-feasible start times in
{Si, . . . ,LS i} are determined and stored in the so-called scheduling setΘi, where the resource-feasibility is ensured
by taking the resource consumptionrck(S

C) :=
∑

j∈C r
c
jk(Sj) for each resourcek ∈ Ri := {k ∈ R | rdik > 0}

of partial scheduleSC into account. In Schirmer (1999, Theorem 9.5) it has alreadybeen shown for the RCPSP/π
that in general, the step-wise scheduling of all activitiesof the project at their earliest feasible start times does not
guarantee to obtain an optimal schedule. As a consequence, all SGS for the RCPSP/π in the literature select the
start timet for each not currently scheduled activityi ∈ C̄ out of the set of all feasible start times of activityi
(which could not be eliminated by consistency tests) (see Schirmer, 1999; Alvarez-Valdes et al., 2006, 2008, 2015).
In what follows, we show that it is sufficient to consider onlya subset ofΘi for some not currently scheduled activity
i ∈ C̄, so that the generation of at least one optimal schedule is still guaranteed. As it is shown later on, due to
the maximum time lags between the activities of the project,the restriction of setΘi requires the implementation
of an unscheduling step. In the following, we call the respective subset the reduced scheduling set ofΘi which is
defined byTi := {τ ∈ Θi | ∄τ

′ ∈ [0, τ [∩Θi : ruik(τ) ≥ ruik(τ
′) for all k ∈ Ri}. Roughly speaking, by using the

reduced scheduling setTi, a delay of the start time of activityi ∈ C̄ is only accepted if it results in a lower resource
consumption for at least one resourcek ∈ Ri with respect to all lower start times inΘi. For the moment, we assume
that the reduced scheduling setTi is given. Later on, we discuss two different algorithms to calculateTi in Sect. 4.
Based on the reduced scheduling setTi, all direct descendants of enumeration node(C, S) are generated. For each
descendant node(C′, S′), some scheduling timet ∈ Ti is established as the start timeS′

i of activity i, followed by the
update of the earliest time-feasible start times for all activities of the project if it is assumed that activityi starts at
time t which is given byS′ := (max(Sj , S

′
i + dij))j∈V . Since accordingly, for each start timet ∈ Ti the minimum

time lag to all currently scheduled activities is satisfied,i.e., Sj + dji ≤ t for all j ∈ C, in case that start timet is
not time-feasible there has to be at least one activityj ∈ C with Sj − dij < t. This means that the induced latest
start timeLS i(Sj) := Sj − dij of activity i by some activityj ∈ C prevents the time-feasibility of start timet. As a
consequence, in order to achieve the time-feasibility ofS′ C∪{i} with S′

i = t, all currently scheduled activitiesj ∈ C
with t > LS i(Sj) or ratherS′

j > Sj has to be unscheduled which is obtained byC′ := C \ {j ∈ C | S′
j > Sj}. It

should be noted that0 ∈ C′ is always ensured byt ≤ LS i due to the definition ofΘi. In case that start timet is
time-feasible, which means thatt ≤ minj∈C LS i(Sj), activity i is scheduled at start timeS′

i = t which is established
by C′ := C ∪ {i}. Finally, after the scheduling or unscheduling step, the descendant node(C′, S′) is stored inΩ in
order to be explored in one of the following iterations. Fromthe description of the procedure to schedule or unschedule
activities it follows directly that each partial scheduleSC of an enumeration node(C, S) is feasible. Accordingly, in
case that some node(C, S) with C = V is removed fromΩ, scheduleS = SC ∈ S is stored inΦ as a candidate
schedule. After all enumeration nodes have been explored, i.e.,Ω = ∅, Algorithm 1 terminates and returns setΦ
which contains all candidate schedules generated in the course of the enumeration procedure.

In what follows, we prove that Algorithm 1 generates at leastone optimal schedule in finitely many iterations if and
only if there is at least one feasible solution. It should be noted that the total correctness of Algorithm 1 follows
directly from this proof since each candidate schedule is feasible, i.e.,Φ ⊆ S. First of all, Theorem 1, which is based
on Lemmas 1 and 2, states that the enumeration scheme generates at least the set of all so-called active schedulesAS,
where in line with Neumann et al. (2000), we call a feasible scheduleS active if and only if there is no feasible schedule
S′ 6= S with S′ ≤ S, i.e.,S′

i ≤ Si for all i ∈ V . Since obviously there is at least one optimal schedule which is active
for each instance withS 6= ∅, Theorem 1 implicates the completeness of Algorithm 1, i.e., S 6= ∅ ⇔ Φ ∩ OS 6= ∅.
Finally, Lemma 3 establishes that the enumeration scheme terminates after a finite number of iterations.

Theorem 1. Algorithm 1 generates all active schedules, i.e.,Φ ⊇ AS.

Proof. It is easy to verify that for each active scheduleSa ∈ AS the conditionsS ≤ Sa andrujk(Sj) ≤ rujk(S
a
j ) for all

j ∈ C and allk ∈ Rj are satisfied with(C, S) corresponding to the root node. Accordingly, it follows from Lemma 1
that there exists at least one path in the enumeration tree onwhich each node(C, S) satisfies the conditionsS ≤ Sa

andrujk(Sj) ≤ rujk(S
a
j ) for all j ∈ C and allk ∈ Rj , respectively. Since for the generation of any direct descendant

node either the start timeSj for at least one activityj ∈ C is increased (S′
j > Sj) or some activityi ∈ C̄ is scheduled

(C′ := C ∪ {i}), each such path has a finite length. Finally, from the property of Algorithm 1 that each generated
scheduleS ∈ Φ is feasible and sinceS ≤ Sa with S 6= Sa would contradict the assumption thatSa is active, we can
state that Algorithm 1 generates all active schedules.

Lemma 1. LetSf ∈ S be any feasible schedule and(C, S) some node corresponding to the enumeration scheme of
Algorithm 1 withC 6= V , S ≤ Sf andrujk(Sj) ≤ rujk(S

f
j ) for all j ∈ C and all k ∈ Rj . Then there is at least one

direct descendant node(C′, S′) which fulfills the conditionsS′ ≤ Sf andrujk(S
′
j) ≤ rujk(S

f
j ) for all j ∈ C′ and all

k ∈ Rj .

4



A constructive branch-and-bound algorithm for the RCPSP/max-π A PREPRINT

Proof. Let i ∈ C̄ be the selected activity for the generation of the direct descendants of enumeration node(C, S).
First of all, Sf

i ∈ Θi can easily be derived fromSi ≤ Sf
i ≤ LS i andrck(S

C) + rcik(S
f
i ) ≤ rck(S

f ) ≤ Rk for all
k ∈ Ri. SinceSf

i ∈ Θi, from Lemma 2 we gett := min{τ ∈ Θi | r
u
ik(τ) ≤ ruik(S

f
i ) for all k ∈ Ri} ∈ Ti, so that

t ≤ Sf
i andruik(t) ≤ ruik(S

f
i ) for all k ∈ Ri. Accordingly, considering the direct descendant node corresponding to

start timet of activity i, S′ ≤ Sf is implied byt ≤ Sf
i (t + dij ≤ Sf

i + dij ≤ Sf
j for all j ∈ V ) and the conditions

rujk(S
′
j) ≤ rujk(S

f
j ) for all j ∈ C′ andk ∈ Rj are satisfied as well, either if activityi is scheduled (C′ := C ∪ {i}) or

some activities are unscheduled.

Lemma 2. LetTi be the reduced scheduling set ofΘi ⊆ {0, 1, . . . , d̄}. ThenTi contains exactly all lowest scheduling
timest ∈ Θi which satisfyruik(t) ≤ ruik(τ) for any τ ∈ Θi and all k ∈ Ri, i.e., Ti = T∪

i :=
⋃

τ∈Θi
{min{τ ′ ∈

Θi | r
u
ik(τ

′) ≤ ruik(τ) for all k ∈ Ri}}.

Proof. Consider any start timet ∈ Ti. From the definition ofTi it follows directly thatt = min{τ ∈ Θi | r
u
ik(τ) ≤

ruik(t) for all k ∈ Ri}, so thatTi ⊆ T∪
i is given. Next, letτ ∈ Θi andt := min{τ ′ ∈ Θi | r

u
ik(τ

′) ≤ ruik(τ) for all k ∈
Ri} be given and assumet /∈ Ti. Sincet /∈ Ti implies t > min{τ ′ ∈ Θi | r

u
ik(τ

′) ≤ ruik(τ) for all k ∈ Ri}, which
would contradict the assumption fort, Ti ⊇ T∪

i and thereforeTi = T∪
i follows.

Lemma 3. Algorithm 1 generates at most̄d d̄|V | enumeration nodes.

Proof. For the generation of any descendant node in the enumerationscheme of Algorithm 1 either the selected activity
i ∈ C̄ is scheduled or the start timeSj of any activityj ∈ C is increased by at least one unit. Since the start time of
each activity is trivially bounded from above by the maximumproject durationd̄, an upper bound for the maximum
depth of the enumeration tree is given byd̄|V |. Accordingly, an upper bound for the maximum number of generated
nodes is given bȳd d̄|V | taking into consideration that the number of start times inTi is bounded from above bȳd.

4 Reduced scheduling set

This section is concerned with the calculation of the reduced scheduling setTi of setΘi which contains the resource-
feasible start times of activityi ∈ C̄ which is chosen for the augmentation of a partial scheduleSC in Algorithm 1.
In what follows, we describe two different procedures to calculateTi := {τ ∈ Θi | ∄τ ′ ∈ [0, τ [∩Θi : ruik(τ) ≥
ruik(τ

′) for all k ∈ Ri}.

Algorithm 2: Reduced scheduling set (v1)

Input: Scheduling setΘi

Output: Reduced scheduling setTi

1 Ti := ∅ t := minΘi element := true

2 while t < ∞ do
3 forall τ ∈ Ti do
4 element := false
5 forall k ∈ Ri do
6 if ruik(t) < ruik(τ) then
7 element := true
8 break
9 if element = false then

10 break
11 if element = true then
12 Ti := Ti ∪ {t}
13 t := min{τ ∈ Θi | τ > t}
14 return Ti

The first procedure is sketched in Algorithm 2, wheremin ∅ := ∞ is defined to simplify the representation. In the
course of the procedure, variablet serves as the start time fromΘi which is considered in the current iteration while
the boolean variableelement is used to indicate if start timet is or is not an element ofTi. The algorithm starts
with an empty setTi and checks in each iteration for some start timet ∈ Θi if there is any start timeτ ∈ Ti with

5
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ruik(t) ≥ ruik(τ) for all k ∈ Ri. This is done in the procedure by checking for eachτ ∈ Ti if there is at least one
resourcek ∈ Ri with ruik(t) < ruik(τ). If this is the case for all start times inTi, which means that there is no start
time τ ∈ Ti with ruik(t) ≥ ruik(τ) for all k ∈ Ri, t is added toTi. Since all start timest ∈ Θi are considered in an
increasing order, the condition that there is no start timeτ ∈ Ti with ruik(t) ≥ ruik(τ) for all k ∈ Ri implies that there
is also no lower start time inΘi satisfying this condition. This can easily be verified by noticing that for each start
timeτ ∈ Θi, which has not been added toTi in the course of Algorithm 2, there is at least one lower starttimeτ ′ ∈ Ti

with ruik(τ
′) ≤ ruik(τ) for all k ∈ Ri. Finally, since for each start timet ∈ Θi which is not added toTi, there is at least

one earlier start timeτ ∈ Θi (τ ∈ Ti) with ruik(t) ≥ ruik(τ) for all k ∈ Ri, we can state that Algorithm 2 is correct or
rather returns the reduced scheduling set ofΘi.

In contrast to Algorithm 2, which in the worst case compares the resource usage of each start timet ∈ Θi with the
resource usage of all lower start timesτ ∈ Ti, the second algorithm to calculateTi makes use of insights concerned
with the course of the resource usage of an activity over its start times. In what follows, we show that the course of
the resource usage of any resourcek ∈ Ri by an activityi ∈ V is constant within each of a number of time intervals
covering the whole planning horizonH := {0, 1, . . . , d̄}, whose number is bounded by a polynomial function in the
instance length. As a consequence, it is sufficient to store the resource usageruik(τ) of a resourcek ∈ Ri by an activity
i ∈ V for a polynomially bounded number of timesτ ∈ Ψ ⊆ H to be able to calculate the resource usage for any start
time t ∈ H. In the following we callI := {a, a + 1, . . . , b} ⊆ Πk with a − 1, b + 1 /∈ Πk a component ofΠk and
denote byUs

k := {σ | σ /∈ Πk ∧ σ + 1 ∈ Πk} (Ue
k := {σ | σ ∈ Πk ∧ σ + 1 /∈ Πk}) the set of the start (end) times

of all components inΠk. Furthermore, we call∆u
ik(τ) := ruik(τ + 1)− ruik(τ) the resource usage change of resource

k ∈ Ri by activity i ∈ V at start timeτ . Then in line with Watermeyer and Zimmermann (2020), the relations

τ + 1 ∈ Πk ∧ τ + pi + 1 ∈ Πk ⇒ ∆u
ik(τ) = 0

τ + 1 ∈ Πk ∧ τ + pi + 1 /∈ Πk ⇒ ∆u
ik(τ) = -1

τ + 1 /∈ Πk ∧ τ + pi + 1 ∈ Πk ⇒ ∆u
ik(τ) = 1

τ + 1 /∈ Πk ∧ τ + pi + 1 /∈ Πk ⇒ ∆u
ik(τ) = 0

for each start timeτ ∈ H imply that it is sufficient to store the resource usages of allstart timesτ ∈ Ψ := {τ ′ ∈
H | τ ′ ∈ Uk ∨ τ ′+pi ∈ Uk} with Uk := Us

k ∪ Ue
k ∪ {0, d̄} to be able to calculate the resource usage for any start time

τ ∈ H. In order to determine the resource usage of any resourcek ∈ Ri by activity i ∈ V for any start timeτ ∈ H, a
list [ruik(t)] which contains the resource usages of allt ∈ Ψ ordered by increasing values oft is determined which can
be used to calculate the resource usage for any start timeτ ∈ H by

ruik(τ) := ruik(τ
′) + sgn (ruik(τ

′′)− ruik(τ
′)) · (τ − τ ′)

with τ ′ := max{σ ∈ Ψ | σ ≤ τ} andτ ′′ := min{σ ∈ Ψ | σ ≥ τ}. It is easy to verify that the number of start times in
Ψ is given byO(Ik) with Ik as the number of components inΠk.

i

d̄

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 v

1
2
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 t

ruik(t)

rs

rs rs

rs rs
rs rs

rs rs
b

b

b b b

b

b

b b

b b b

b b b b

Figure 1: Course of the resource usage over all times of the planning horizon

In order to illustrate the concept of storing the resource usage for a subset of times of the planning horizonΨ in
a list [ruik(t)], we discuss the example illustrated in Figure 1. The exampleshows the resource usage course of a
resourcek ∈ Ri by an activityi ∈ V over all start timesτ ∈ H with Πk = {3, . . . , 7, 12} andpi = 3. The
resource usageruik(τ) of start timeτ = 0 and also the setΠk are outlined by hatched areas. For this example, we
getUk = Us

k ∪ Ue
k ∪ {0, d̄} = {2, 11} ∪ {7, 12} ∪ {0, 15} = {0, 2, 7, 11, 12, 15} so thatΨ = {τ ′ ∈ H | τ ′ ∈

Uk} ∪ {τ ′ ∈ H | τ ′ + pi ∈ Uk} = {0, 2, 7, 11, 12, 15} ∪ {4, 8, 9, 12} = {0, 2, 4, 7, 8, 9, 11, 12, 15} follows directly.
The start timesτ ∈ Ψ, for which, as explained before, it is sufficient to store theresource usage in a list[ruik(t)], are
marked by squares in Figure 1.
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Based on the previous explanations, we can now state more formally that the planning horizonH can be subdivided
in O(Ik) time intervals[a, b] with ∆u

ik(τ) = ∆u
ik(τ + 1) for all τ ∈ [a, b[∩Z for any activityi ∈ V and resource

k ∈ Ri. In the following we say that activityi ∈ V has a constant resource usage course of resourcek ∈ Ri on any
time interval[a, b] if ∆u

ik(τ) = ∆u
ik(τ + 1) for all τ ∈ [a, b[∩Z. Considering all resourcesk ∈ Ri of an activity

i ∈ V , it follows directly that there is a polynomially bounded number of time intervals[a, b] over the whole planning
horizonH for activity i ∈ V with a constant resource usage course of all resourcesk ∈ Ri. As an example for a
time interval with a constant course of all resource usages of an activity, see the left part of Figure 2. In what follows,
we establish conditions for time intervals[a, b] in scheduling setΘi with a constant resource usage course over all
resources of activityi ∈ V which, as shown later on, are used in Algorithm 3 to calculateTi.

a b a b

ru,max

ik1

ru,min

ik2

ru,min

ik1

ru,max

ik2

Figure 2: Time interval with a constant course of all resource usages

Lemma 4. LetΘi ⊆ H be some scheduling set determined in Algorithm 1 for any not currently scheduled activity
i ∈ C̄ and let{a, a+1, . . . , b} ⊆ Θi with a < b and∆u

ik(τ
′) = ∆u

ik(a) for all τ ′ ∈ [a, b[∩Z and allk ∈ Ri be given.
Then any start timeτ ∈ Θi satisfies

∄τ ′ ∈ [a, b] ∩ Z : ruik(τ) ≥ ruik(τ
′) for all k ∈ Ri (1)

if and only if at least one of the conditions

∃k ∈ Ri : r
u
ik(τ) < ru,min

ik (2)

∃(k1, k2) ∈ R− ×R+ : ruik1
(τ) + ruik2

(τ) < ru,min

ik1
+ ru,min

ik2
+ b− a (3)

with ru,min

ik := min{ruik(τ) | τ ∈ [a, b] ∩ Z}, R− := {k ∈ Ri |∆
u
ik(a) < 0} andR+ := {k ∈ Ri |∆

u
ik(a) > 0} is

met.

Proof. First, we show that (1) is satisfied for anyτ ∈ Θi if at least one of the conditions (2) or (3) is met. Assume
that (2) is satisfied. Then condition (1) follows directly, since there is at least one resourcek ∈ Ri with ruik(τ) <
ruik(τ

′) for all τ ′ ∈ [a, b] ∩ Z. Next we suppose that (3) is satisfied while (2) is not met by start timeτ . It follows
ruik1

(τ) + ruik2
(τ) < ru,max

ik1
+ ru,min

ik2
with ru,max

ik1
:= max{ruik1

(τ) | τ ∈ [a, b]∩Z} = ru,min

ik1
+ b− a for at least one

pair(k1, k2) ∈ R−×R+, which can easily be derived from the right part of Figure 2. Together withruik2
(τ) ≥ ru,min

ik2

we getruik1
(τ) < ru,max

ik1
, which implies∃τ ′ ∈ [a+ 1, b] ∩ Z with ruik1

(τ) = ruik1
(τ ′). Sinceruik1

(τ ′′) + ruik2
(τ ′′) =

ru,min

ik1
+ ru,min

ik2
+ b− a =: ck1k2

for all τ ′′ ∈ [a, b] ∩ Z (see Figure 2), we getruik1
(τ) = ruik1

(τ ′) = ck1k2
− ruik2

(τ ′)

which leads toruik2
(τ) < ruik2

(τ ′) with (3). Finally, we can state that (1) is met, sinceruik1
(τ) = ruik1

(τ ′) < ruik1
(τ ′′)

for all τ ′′ ∈ [a, τ ′[∩Z andruik2
(τ) < ruik2

(τ ′) ≤ ruik2
(τ ′′) for all τ ′′ ∈ [τ ′, b] ∩ Z.

In the next step, we prove that (1) is not satisfied if neither (2) nor (3) is met. For this, let both conditions (2) and
(3) not be satisfied andruik(τ) ≥ ru,max

ik be given for allk ∈ Ri. Then (1) is not fulfilled, sinceruik(τ) ≥ ruik(a) for
all k ∈ Ri. Consequently, it remains to consider that there is at leastone resourcek1 ∈ R− with ruik1

(τ) < ru,max

ik1
.

Since this implies that there is at least one timeτ ′ ∈ [a+1, b] ∩ Z with ruik1
(τ) = ruik1

(τ ′), equivalent to the previous
descriptions, we getruik2

(τ) ≥ ruik2
(τ ′) for eachk2 ∈ R+. Now, we consider timēτ := max{τ ′ ∈ [a+1, b]∩Z |∃k ∈

R− : ruik(τ) = ruik(τ
′)}, for which ruik2

(τ) ≥ ruik2
(τ̄) for all k2 ∈ R+ andruik1

(τ) ≥ ruik1
(τ̄) for all k1 ∈ R− can

directly be followed. Finally withruik(τ) ≥ ru,min

ik for all k ∈ Ri we can derive that (1) is not satisfied for start time
τ sinceruik(τ) ≥ ruik(τ̄) for all k ∈ Ri.

In the following we describe the second procedure to calculate Ti for any scheduling setΘi which is outlined in
Algorithm 3. As the first procedure, Algorithm 3 starts with an empty reduced scheduling setTi which is comple-
mented in the course of the algorithm. In each iteration, theprocedure operates on a subsetΘ of the scheduling set
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Algorithm 3: Reduced scheduling set (v2)

Input: Scheduling setΘi

Output: Reduced scheduling setTi

1 Ti := ∅ Θ := Θi

2 while Θ 6= ∅ do
3 a := minΘ b := a R− := ∅ R+ := ∅
4 if a 6= eΘi(a) then
5 R− := {k ∈ Ri |∆

u
ik(a) < 0}

6 if R− 6= ∅ then
7 R+ := {k ∈ Ri |∆

u
ik(a) > 0}

8 forall k ∈ Ri do
9 bik := max{τ |∆u

ik(τ
′) = ∆u

ik(a) for all τ ′ ∈ [a, τ [∩Z}
10 b := min

(
mink∈Ri

bik, e
Θi(a)

)

11 forall k ∈ Ri do
12 ru,min

ik := min{ruik(τ) | τ ∈ [a, b] ∩ Z}

13 Ti := Ti ∪ ([a, b] ∩ Θ) Θ := Θ \ {a, a+ 1, . . . , b} Θ′ := ∅

14 forall k ∈ Ri : r
u,min

ik > 0 do
15 Θ′ := Θ′ ∪ {τ ∈ Θ | ruik(τ) < ru,min

ik }
16 forall (k1, k2) ∈ R− ×R+ do
17 c := ru,min

ik1
+ ru,min

ik2
+ b− a

18 Θ′ := Θ′ ∪ {τ ∈ Θ | ruik1
(τ) + ruik2

(τ) < c}
19 Θ := Θ′

20 return Ti

Θi, whereΘ equalsΘi at the start of the algorithm. In the following, we call a setI := {s, s + 1, . . . , e} ⊆ Θi a
component ofΘi exactly if s − 1, e + 1 /∈ Θi with s ande as the start and the end time of componentI, respec-
tively. Furthermore, we denote byeΘi(τ) the end time of the componentI in Θi corresponding to start timeτ , i.e.,
τ ∈ I. In each iteration of Algorithm 3, the variablesa andb are determined which represent the start and the end
of a time interval[a, b] which is completely enclosed in some componentI of Θi, which means[a, b] ∩ Z ⊆ I.
First, a is set to the start time of the first component inΘi, where in case that the end time of the first compo-
nent in Θi is greater than the start time (a 6= eΘi(a)), the set of all resourcesk ∈ Ri with ∆u

ik(a) < 0 is
determined (R−). If R− 6= ∅, the set of all resourcesk ∈ Ri with ∆u

ik(a) > 0 (R+) is established as well,
followed by the calculation of the greatest possible valuebik for each resourcek ∈ Ri ensuring a constant re-
source usage course on time interval[a, bik]. Accordingly with b := min

(
mink∈Ri

bik, e
Θi(a)

)
, a time interval

[a, b] ∩ Z ⊆ Θi with a constant resource usage course over all resourcesk ∈ Ri on interval[a, b] is determined.
Otherwise, in case that eithera = eΘi(a) or R− = ∅, time interval[a, b] with b := a is considered for the fol-
lowing calculations instead. After the minimum resource usageru,min

ik := min{ruik(τ) | τ ∈ [a, b] ∩ Z} on interval
[a, b] for each resourcek ∈ Ri has been determined, start times{a, a + 1, . . . , b} ∩ Θ are added toTi. Given
Θ = Θa

i := {τ ∈ Θi | τ ≥ a ∧ ∄τ ′ ∈ [0, a[∩Θi : ruik(τ) ≥ ruik(τ
′) for all k ∈ Ri}, which is ensured by the

procedure in each iteration as shown later on,[a, b] ∩ Θ = [a, b] ∩ Ti (see line 13) can be derived as follows. While
the relation is directly be given by the definition ofTi for a = b, the correctness can also be established fora < b,
noticing that the procedure ensures that there is at least one resourcek ∈ R− with ruik(τ

′) < ruik(τ) for each pair
(τ, τ ′) ∈ {a, a+ 1, . . . , b}2 with τ < τ ′. In what follows, we prove the correctness of Algorithm 3, i.e., the procedure
returns the reduced scheduling set ofΘi. For this, based on the previous descriptions, it is sufficient to show that
Θ′ = Θb+1

i at the end of each iteration sinceΘb+1
i = Θα

i with α = minΘb+1
i follows directly if Θb+1

i 6= ∅, which
implies[b+ 1, α[∩Ti = ∅. First, we can stateτ ∈ Θ′ ⇔ ∄τ ′ ∈ [a, b] ∩ Θi : r

u
ik(τ) ≥ ruik(τ

′) for all k ∈ Ri with Θ′

as the outcome of the operations in lines 13-18, where Lemma 4is considered in case thata < b. Thus, givenΘ = Θa
i ,

Θ′ = Θb+1
i can directly be derived. Finally, by mathematical induction, takingΘi = Θa

i with a = minΘi for Θi 6= ∅
in the initialization step into account, we get the correctness of Algorithm 3.

The last part of this section is concerned with the time complexities of both algorithms to calculate the reduced
scheduling setTi. For this, we call a setI := {s, s+1, . . . , e} ⊆ H \Υ a break ofΥ ⊆ H exactly ifs− 1, e+1 ∈ Υ,
where we denote byBΥ the number of breaks inΥ. In compliance with setΘi, we call setI ⊆ Υ a component ofΥ

8
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precisely ifs − 1, e + 1 /∈ Υ. It should be noted that each setΥ ⊆ H can be stored in memory by a list containing
the start and the end times of all components in an increasingorder, which is used for the setsΘi, Θ andTi in the
following. First, we take a look on the time complexity of Algorithm 2. Noticing that the number of start times inΘi is
bounded from above bȳd, where each start time is compared with at most all start times before, we can easily derive a
maximal number ofO(d̄2) comparisons between pairs of start times. Since for each comparison at most|R| resources
have to be considered, we get a time complexity ofO(d̄2|R|) for the comparison of the resource usages between all
start times. Furthermore, by using list[ruik(t)] to determine the resource usage for each start timet ∈ Θi and by storing
the resource usages of all start times which are added toTi, we get a time complexity ofO(d̄2|R|+I) for Algorithm 2
with I as the sum of the number of componentsIk over all resourcesk ∈ R. Sinced̄ ≥ Ik and thusd̄|R| ≥ I is
given, finally we can state a time complexity ofO(d̄2|R|) for Algorithm 2. In order to determine the time complexity
of Algorithm 3, we assumeΘλ to be the setΘ at the start of any iterationλ ∈ Z≥0. First we consider the operations in
lines 14-18. For both loops, using lists[ruik(t)] for all resourcesk ∈ Ri and by storingΘ by the start and the end times
of all components, we can derive time complexities ofO(|R|BΘλ + I) andO(|R|2BΘλ + |R|I), respectively. Next,
we can observe that the number of iterations isO(BΘi + I) by noticing that start timea, considering two consecutive
iterations, is either assigned to a following component inΘi or skips at least one element in any list[ruik(t)] of some
resourcek ∈ Ri. It should be noted, that in casea 6= eΘi(a) andR− = ∅, start timea also skips at least one element
in some list[ruik(t)] since start timeτ = minΘb+1

i − 1 has to satisfy∆u
ik(τ) < 0 for somek ∈ Ri. Taking into

account that start timea is monotonically increasing over all iterations,eΘi(a) can be determined over all iterations
by considering each start and each end time of a component inΘi at most once. The same applies to the elements of
all lists [ruik(t)] to determine setsR−, R+, valuesbik and also the minimum resource usageru,min

ik on some interval
[a, b] for all k ∈ Ri. Conclusively, observing thatTi is complemented in each iteration inO(BΘλ) times, we get a
time complexity ofO(|R|2BΘλ + |R|I) for each iteration. Noticing, that the maximal number of breaks added by
the procedures in lines 14-18 to setΘλ in each iteration is given byO(|R|I), we can state that the maximal number
of breaks to be considered inΘλ in each iteration isO((BΘi + I)|R|I). In conclusion, we get a time complexity of
O((BΘi + I)2|R|3I) for Algorithm 3.

5 Improving techniques

In Watermeyer and Zimmermann (2020) it has already been shown for a relaxation-based branch-and-bound algorithm
for the RCPSP/max-π that the application of consistency tests, lower bounds andtechniques to avoid redundancies
can have a great impact on the performance. In what follows, we extend our enumeration scheme in order to be able
to use the consistency tests and lower bounds which have successively been applied in Watermeyer and Zimmermann
(2020). As it will be shown later on in Sect. 5.3, the extension of the enumeration scheme is also used for techniques
to prevent redundancies in the search tree.

For the extension of the enumeration scheme we establish a domainWi ⊆ H for the start timeSi of each activity
i ∈ V , whereWi contains all possible start times of activityi ∈ V , i.e., Si ∈ Wi. In line with Definition 1 in
Watermeyer and Zimmermann (2020), we callW := (Wi)i∈V with Wi ⊆ H for all i ∈ V andW0 = {0} a start time
restriction and denote byWi the start time restriction of activityi ∈ V . In the following we speak of aW -feasible
scheduleS if S ∈ ST (W ) := {S ∈ ST | Si ∈ Wi for all i ∈ V } and say that a partial scheduleSC is W -feasible if
there is at least one scheduleS′ ∈ ST (W ) with S′

i = Si for all scheduled activitiesi ∈ C. Furthermore, in accordance
with Definition 1, we say that start timeSi of any not currently scheduled activityi ∈ C̄ is W -feasible exactly if
augmentationSC∪{i} is W -feasible. Accordingly, ift is established as the earliest possible start time of some activity
i ∈ V , the earliestW -feasible start time of any activityj ∈ V can be expressed byES j(W, i, t) := (min S̃T (W, i, t))j
with S̃T (W, i, t) := {S ∈ ST (W ) | Si ≥ t}. In the same manner, the latestW -feasible start time of an activityj ∈ V

is given byLS j(W, i, t) := (max ŜT (W, i, t))j with ŜT (W, i, t) := {S ∈ ST (W ) | Si ≤ t} if t is assumed to
be the latest possible start time of activityi ∈ V . In Watermeyer and Zimmermann (2020), two algorithms have
been introduced which are able to determine the minimal point of S̃T (W, i, t) and the maximal point of̂ST (W, i, t),
respectively, both with a time complexity ofO(|V ||E|(B+1)) with B as the total number of breaks inW . For details,
we refer the reader to Watermeyer and Zimmermann (2020).

The extension of the enumeration scheme is given in Algorithm 4, where a start time restrictionW is stored in addition
for each enumeration node, so that each node is given by a triple (C, S,W ). At the beginning of the algorithm,
Wi := {ES i, . . . ,LS i} for all i ∈ V ensures that all feasible schedulesS ∈ S are covered by the set of allW -feasible
schedules in the root node, i.e.,ST (W ) ⊇ S. In the further course of the algorithm, recalling thatWi represents
the domain of start timeSi, all start times inTi of some activityi ∈ C̄ are limited toWi. Accordingly, each start
time t ∈ Ti which is assigned to activityi ∈ C̄ is assured to be an element ofWi. In the branching step, in order
to generate a descendant node(C′, S′,W ′), some start timet ∈ Ti is established as the earliest start time of activity
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Algorithm 4: Extended enumeration scheme

Input: Instance of problem RCPSP/max-π
Output: SetΦ of candidate schedules

1 Determine distance matrixD = (dij)i,j∈V

2 ES i := d0i, LS i := −di0 for all i ∈ V
3 Wi := {ES i, . . . ,LS i} for all i ∈ V
4 C := {0} S := ES
5 Ω := {(C, S,W )} Φ := ∅

6 while Ω 6= ∅ do
7 Remove(C, S,W ) from setΩ
8 if C = V then
9 Φ := Φ ∪ {S}

10 else
11 Select activityi ∈ C̄
12 Θi := {τ ∈ Wi | r

c
k(S

C) + rcik(τ) ≤ Rk for all k ∈ Ri}
13 ComputeTi := ReducedSchedulingSet(Θi)
14 forall t ∈ Ti do
15 S′

i := t S′ := min S̃T (W, i, S′
i)

W ′ := (Wj \ [0, S
′
j [)j∈V

16 if ∃j ∈ C : S′
j > Sj then

17 C′ := C \ {j ∈ C | S′
j > Sj}

18 else ifS′
i = t then

19 C′ := C ∪ {i}
20 Ω := Ω ∪ {(C′, S′,W ′)}
21 return Φ

i ∈ C̄ by settingS′
i := t. Following, the earliestW -feasible scheduleS′ with S′ ≥ S andS′

i ≥ t is determined. Since
S = (minWi)i∈V is assured at the start of each iteration, the earliestW -feasible schedule withS′ ≥ S andS′

i ≥ t is
obtained byS′ := min S̃T (W, i, t). Obviously, if there is at least one scheduled activityj ∈ C with ES j(W, i, t) > Sj

(S′
j > Sj), which implies thatt > LS i(W, j, Sj), start timet of activity i is notW -feasible. As a consequence, all

activitiesj ∈ C with S′
j > Sj have to be unscheduled, so that activityi can be scheduledW -feasible at start timet in

case thatt = ES i(W, i, t) (S′
i = t). It should be noted that in general, due to the breaks inW , S′

i = t is not assured
even if there is no scheduled activityj ∈ C with S′

j > Sj . As a consequence, activityi can only be scheduledW -
feasible at timet if S′

i = t. Finally, it should be mentioned that Algorithms 1 and 4 construct exactly the same search
tree if no start time restriction with a break is present in the whole enumeration tree corresponding to Algorithm 4.
This can directly be derived frommin S̃T (W, i, t) = (max(Sj , t + dij))j∈V with S = (minWi)i∈V in case thatW
with Wi 6= ∅ for all i ∈ V does not contain any break.

In what follows, we prove the total correctness of the extended enumeration scheme which is closely related to the
proof of the correctness for Algorithm 1. First, Theorem 2 states the completeness of the extended enumeration
scheme, where Theorem 2 is based on Lemma 5 which represents ageneralization of Lemma 1. Finally, taking into
account that Lemma 3 also applies to Algorihm 4 and that each candidate scheduleS ∈ Φ of Algorithm 4 is feasible,
we can state the total correctness of the extended enumeration scheme.

Theorem 2. Algorithm 4 generates all active schedules, i.e.,Φ ⊇ AS.

Proof. See the proof of Theorem 1.

Lemma 5. LetSf ∈ S be any feasible schedule and(C, S,W ) some node corresponding to the enumeration scheme
of Algorithm 4 withC 6= V , S ≤ Sf , Sf ∈ ST (W ) and rujk(Sj) ≤ rujk(S

f
j ) for all j ∈ C and all k ∈ Rj . Then

there is at least one direct descendant node(C′, S′,W ′) which fulfills the conditionsS′ ≤ Sf , Sf ∈ ST (W
′) and

rujk(S
′
j) ≤ rujk(S

f
j ) for all j ∈ C′ and allk ∈ Rj .
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Proof. Equivalent to the proof of Lemma 1, based on Lemma 2, considering some activityi ∈ C̄ selected for the
branching step, there is always a start timet = min{τ ∈ Θi | r

u
ik(τ) ≤ ruik(S

f
i ) for all k ∈ Ri} ∈ Ti with t ≤ Sf

i

andruik(t) ≤ ruik(S
f
i ) for all k ∈ Ri. Accordingly, considering the direct descendant node corresponding to start

time t of activity i, t ≤ Sf
i andSf ∈ ST (W ) imply S′ := min S̃T (W, i, t) ≤ Sf and henceSf ∈ ST (W

′) with
W ′ := (Wj \ [0, S′

j [)j∈V . Furthermore, the conditionsrujk(S
′
j) ≤ rujk(S

f
j ) for all j ∈ C′ andk ∈ Rj are satisfied

as well, either if activityi is scheduled (C′ := C ∪ {i}), some activities are unscheduled, or the number of scheduled
activities remains unchanged.

5.1 Lower bounds

The calculation of lower bounds on the objective function value for minimization problems constitutes an integral part
of a branch-and-bound algorithm. In this section, we present two lower bounds on the project duration which have
been developed in Watermeyer and Zimmermann (2020).

The first lower bound is equal to the earliest time-feasible project termination if the start time restrictions of all activities
are taken into account. This lower bound can be seen as an extension of the well-known critical path-based lower
bound, where certain start times of activities are not allowed. The corresponding lower bound is given byLB0π :=
ESn+1(W ) with ES (W ) := minST (W ) which can be calculated with a time complexity ofO(|V ||E|(B + 1)).

The second lower boundLBDπ is determined in a destructive way, which means that a hypothetical upper boundd
on the project duration is increased as long as it can be shownthat it precludes any feasible solution (Brucker and
Knust, 2003). To determine the destructive lower boundLBDπ in any node(C, S,W ), a binary search is conducted
on some time interval[LB0π,UB − 1] with UB as the best solution which has already been found in the course of
the branch-and-bound procedure ord̄+ 1, otherwise. Let[LBd,UBd] be the time interval which is considered in any
iteration, then the binary search works as follows. First the upper boundd := ⌈(LBd + UBd)/2⌉ is set, followed
by checking ifd precludes any feasible solution. If this is the case,d can be rejected, which means that interval
[d+1,UBd] can be investigated next, whereas otherwise, interval[LBd, d− 1] is considered. The procedure to check
if the assumption thatSn+1 ≤ d contradicts the existence of any feasible solution is basedon the calculation of the
minimum resource consumptions of all resources over all activities of the project. For this, the latestW -feasible
start timeLSd

i (W ) := LS i(W,n + 1, d) for each activityi ∈ V is determined, where the total minimum resource
consumption of any resourcek ∈ R is given by

rck(W,d) :=
∑

i∈Vk

rcik(W,d),

with rcik(W,d) := min{rcik(τ) | τ ∈ Wi ∩ [ES i(W ),LSd
i (W )]}. In case thatrck(W,d) > Rk for at least one

resourcek ∈ R, d is rejected, whereas otherwise it cannot be shown thatd precludes any feasible solution. The time
complexity ofO(log(d̄)(|V ||E|(B+1)+ |R|B+ |V |I)) for the calculation ofLBDπ has been shown in Watermeyer
and Zimmermann (2020).

5.2 Consistency tests

Consistency tests have already proven to be crucial for the performance of solution procedures for the RCPSP/π
(Alvarez-Valdes et al., 2006, 2008, 2015) and the RCPSP/max-π (Watermeyer and Zimmermann, 2020). In what
follows, we outline consistency tests which have already successively been applied for a relaxation-based branch-and-
bound algorithm for the RCPSP/max-π in Watermeyer and Zimmermann (2020), where we refer the reader to this
reference for further details.

In general, a consistency test establishes an implicit constraint of a problem if some specified condition is satisfied. For
all consistency tests we consider, these implicit constraints are unary on the start time of some activity. Accordingly,
each consistency test is described by a condition and a reduction rule on the start time restriction of some activity. In
line with Dorndorf et al. (2000a), each of the following consistency tests can be interpreted as a functionγ mapping
any start time restrictionW to an updated start time restrictionW ′ := γ(W ) with W ′

i ⊆ Wi for all i ∈ V . In order to
evaluate the consistency tests, we use the term fixed point, whereW ′ := γ(W ) is said to be the fixed point of some
consistency test if eitherW ′ = W or at least one start time restriction is empty, i.e.,Wi = ∅.

The first three consistency tests are based on the temporal constraintsSj ≥ Si + δij for all (i, j) ∈ E of problem (P),
so that they could be applied on any project scheduling problem independent on the considered resource type. The
following two consistency tests are well known and have already been applied on project scheduling problems (see,
e.g., Dorndorf et al., 2000b; Alvarez-Valdes et al., 2008).The first (second) test is based on checking for some activity
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pair (i, j) ∈ E if the currently lowest (greatest) possible start timeW j := minWj (W i := maxWi) of activity j (i)
is consistent with the lowest (greatest) possible start timeminWi (maxWj) of activity i (j) with respect to time lag
δij . The corresponding conditions and reduction rules are given as follows, where both tests are gathered under the
term temporal-bound consistency test in this work.

W j < W i + δij ⇒ Wj := Wj \ [0,W i + δij [

W i > W j − δij ⇒ Wi := Wi \ ]W j − δij ,∞[

One pass of the temporal-bound consistency test checks the conditions for each activity pair(i, j) ∈ E exactly once.
As it has been shown in Watermeyer and Zimmermann (2020), thefixed point of the temporal-bound consistency
test can be determined by settingW ′

i := Wi ∩ [ES i(W, 0, 0),LS i(W, 0, 0)] for all i ∈ V with a time complexity of
O(|V ||E|(B + 1)).

The next consistency test, which is also based on the temporal constraints of problem (P), checks for each possible
start time of some activity whether there even exists anyW -feasible schedule with this start time of the activity. One
pass of the so-called temporal consistency test considers all start times in the start time restrictions over all activities.
The corresponding condition and reduction rule for some start time t ∈ Wi of an activityi ∈ V is given by

∄S ∈ ST (W ) : Si = t ⇒ Wi := Wi \ {t}.

In Watermeyer and Zimmermann (2020) an algorithm has been developed to determine the fixed point of the temporal
consistency test with a time complexity ofO(|V |2|E|(B + 1)). It should be noted that the temporal consistency test
dominates the temporal-bound consistency test in the sensethatW t

i ⊆ W b
i for all i ∈ V with W t andW b as the fixed

points of the temporal and the temporal-bound consistency test, respectively. In the remainder of this work, we call
each start timet ∈ W t

i of some activityW -feasible.

Next, we deal with consistency tests which take the resourceconstraints
∑

i∈V rcik(Si) ≤ Rk for all k ∈ R of
problem (P) into account, where the temporal constraints are only considered in some of them. All the following
tests have in common that they consider each possible start time of some activity, where it is checked if the induced
resource consumption of the activity and the minimum consumptions of all other activities of the project exceed the
capacity of at least one resource. As it is shown later on, theconsistency tests only differ in the way to calculate the
minimum resource consumptions. First, we consider the so-called resource-bound consistency test which does not
consider any temporal constraint at all. Accordingly, it isassumed that start timet of activity i ∈ V , which is checked
by the consistency test, does not restrict the possible start timesτ ∈ Wj of activity j ∈ V \ {i}. As a consequence,
the minimum resource consumption of each activityj ∈ V \ {i} is given byrc,min

jk (W ) := min{rcjk(τ) | τ ∈ Wj}, so
that the resource-bound consistency test is given by the condition

∃k ∈ Ri : r
c
ik(t) +

∑

j∈Vk\{i}

rc,min

jk (W ) > Rk

and the reduction ruleWi := Wi \ {t}. Thereby one pass can be conducted over all activities and their possible start
times with a time complexity ofO(|V |I + |R|B) as it has been shown in Watermeyer and Zimmermann (2020).

The last two consistency tests can be seen as extensions of the resource-bound consistency test in the sense that
temporal constraints are used in addition to restrict the possible start times of the activities for the calculation of the
minimum resource consumptions. The following consistencytest makes use of the indirect time lagsdij between
the start times of activityi and all activitiesj ∈ V \ {i}, so that activityj can only be started at timesτ ∈ Wj ∩

[t + dij , t − dji]. Consequently, the minimum resource consumption is given by rc,min

ijkt (W,D) := min{rcjk(τ) | τ ∈

Wj ∩ [t+dij , t−dji]} with distance matrixD := (dij)i,j∈V . The corresponding condition of the so-calledD-interval
consistency test for the reduction ruleWi := Wi \ {t} can be stated by

∃k ∈ R : rcik(t) +
∑

j∈Vk\{i}

rc,min

ijkt (W,D) > Rk,

where one pass can be conducted with a time complexity ofO(|V |2|I2 + |V ||R|B2) (Watermeyer and Zimmermann,
2020).

Finally, the last consistency test restricts the possible start times to calculate the minimum resource consumptions even
more by taking breaks in the start time restrictions for the determination of the indirect minimum and maximum time
lags into consideration. For this purpose, algorithms havebeen developed in Watermeyer and Zimmermann (2020)
to determine the indirect minimum (maximum) time lagd̃ij(W, t) (d̂ij(W, t)) between the earliest (latest)W -feasible

12



A constructive branch-and-bound algorithm for the RCPSP/max-π A PREPRINT

start time of some activityj ∈ V and anyW -feasible start timet of activity i ∈ V . By using these time lags, the
minimum resource consumption of any activityj ∈ V \ {i} can be calculated by

rc,min

ijkt (W, D̃, D̂) := min{rcjk(τ) | τ ∈ W r
j }

with D̃ andD̂ as matrices to store the minimum and maximum time lags andW r
j := Wj∩ [t+ d̃ij(W, t), t− d̂ij(W, t)].

In line with the consistency tests described before, one pass of the so-calledW -interval consistency test is conducted
over the possible start times of all activities, where the condition

∃k ∈ R : rcik(t) +
∑

j∈Vk\{i}

rc,min

ijkt (W, D̃, D̂) > Rk

is used for the reduction ruleWi := Wi \ {t}. As it is shown in Watermeyer and Zimmermann (2020), one passof
this test can be conducted with a time complexity ofO(|V |2I2 + |V |2IB + |V ||R|B2).

5.3 Pruning the enumeration tree

In this section we present two techniques which are able to reduce the set of schedules which are explored by a node in
the course of the enumeration scheme. For both methods, the branching step of Algorithm 4 is extended by a procedure
which reduces the start time domain of the branching activity. It should be noted, that in contrast to methods which
remove generated nodes, the following techniques prune parts of the enumeration tree by adding constraints to each
node in the branching step to prevent that parts of the searchtree are generated at all. In what follows, in a first step
we develop the two pruning techniques separately from each other. Afterwards, we show that the combination of both
methods ensures that each part of the time-feasible region is explored exactly once in the course of the enumeration
scheme.

The first technique is based on the storage of the resource usage which is induced by the selected activity and its
start time in the branching step as a lower bound for all possible start times of the considered activity. In order to
use the first pruning technique, which we call usage-preserving technique (UPT), the branching step of the extended
enumeration scheme is adapted as follows. Before start timet ∈ Ti is established as the earliest start time of some
activity i ∈ C̄ in line 15 of Algorithm 4,W ′ := W is initialized andW ′

i := {τ ∈ W ′
i | r

u
ik(τ) ≥ ruik(t) for all k ∈ Ri}

is set. Additionally, for all further operations in line 15,start time restrictionW is replaced byW ′. To show that the
correctness of Algorithm 4 remains if the UPT is used, it is sufficient to show that Lemma 5 can still be applied. For
this, we extend the proof of Lemma 5 by taking into account that the UPT is used. Accordingly, we have to consider
the additional operations in line 15 as described before. Let t = min{τ ∈ Θi | r

u
ik(τ) ≤ ruik(S

f
i ) for all k ∈ Ri} ∈ Ti

with t ≤ Sf
i andruik(t) ≤ ruik(S

f
i ) for all k ∈ Ri be given. Then it can easily be verified thatSf ∈ ST (W

′) after
W ′ := W is initialized andW ′

i := {τ ∈ W ′
i | r

u
ik(τ) ≥ ruik(t) for all k ∈ Ri} is set. Equivalent to the proof of

Lemma 5,S′ := min S̃T (W
′, i, t) ≤ Sf andSf ∈ ST (W

′) with W ′ := (W ′
j \ [0, S′

j [)j∈V can directly be derived,
where all other points of the proof can be used without any change. Conclusively, Lemma 5 can still be applied to
Algorithm 4 even if the UPT is used, where the proof of the total correctness is straightforward. Since the application
of the UPT in Algorithm 4 implies for any node(C, S,W ) and any scheduleS′ ∈ ST (W ) that the conditionsS ≤ S′

andrujk(Sj) ≤ rujk(S
′
j) for all j ∈ C and allk ∈ Rj are satisfied, Corollary 1 can directly be derived from Lemma5.

Corollary 1. Let the UPT be used in Algorithm 4, letSf ∈ S be any feasible schedule, and(C, S,W ) some node
corresponding to the enumeration scheme of Algorithm 4 withC 6= V andSf ∈ ST (W ). Then there is at least one
direct descendant node(C′, S′,W ′) which fulfills the conditionSf ∈ ST (W

′).

As a consequence of Corollary 1, noticing thatST (W
′) ⊆ ST (W ) for some node(C, S,W ) and any of its descendants

(C′, S′,W ′), preciselyST (W ) is completely explored by enumeration node(C, S,W ) and all its descendants. In other
words, there is no descendant node which explores a part of the time-feasible regionST which is not a part ofST (W ).
It should be noted that due to the unscheduling of activitiesthis is not assured if the UPT is not applied.

The second pruning technique is based on the consideration of the resource usages of all times in the reduced schedul-
ing set which are lower than the established earliest start time of the selected activity in the branching step. To apply the
second pruning technique, the same extensions as for the first method are made in line 15 of Algorithm 4, except for the
setting ofW ′

i which is replaced byW ′
i := {τ ∈ W ′

i |∄τ
′ ∈ [0, t[∩Ti : r

u
ik(τ) ≥ ruik(τ

′) for all k ∈ Ri}. Accordingly,
the second method removes each start timeτ fromW ′

i if there is at least one start timeτ ′ in the reduced scheduling set
Ti which is lower thant and satisfiesruik(τ) ≥ ruik(τ

′) for all k ∈ Ri. Since this implies for each start timeτ ∈ W ′
i

that there is at least one resourcek ∈ Ri with ruik(τ) < ruik(τ
′) for eachτ ′ ∈ [0, t[∩Ti, we call this method usage-

limitation technique (ULT). In order to show that Lemma 5 canstill be applied if the ULT is used, the proof of Lemma 5
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can be extended in the same way as for the first pruning technique, where we only have to replace the setting ofW ′
i . Ac-

cordingly, it remains to show thatSf
i ∈ W ′

i afterW ′
i := {τ ∈ W ′

i |∄τ
′ ∈ [0, t[∩Ti : r

u
ik(τ) ≥ ruik(τ

′) for all k ∈ Ri}

is set witht = min{τ ∈ Θi | r
u
ik(τ) ≤ ruik(S

f
i ) for all k ∈ Ri}. Since the assumptionSf

i /∈ W ′
i would contradict that

t equalsmin{τ ∈ Θi | r
u
ik(τ) ≤ ruik(S

f
i ) for all k ∈ Ri}, we can state that Lemma 5 still applies to Algorithm 4 if the

ULT is used. As a consequence, the total correctness of Algorithm 4 with the ULT is given as well.

In what follows, we investigate the application of both pruning techniques in Algorithm 4. For this, we consider two
direct descendants(C′, S′,W ′) and(C′′, S′′,W ′′) of any node in the enumeration tree. In addition, we assume that
both nodes(C′, S′,W ′) and(C′′, S′′,W ′′) are generated by establishingt′ andt′′ with t′ < t′′ as the earliest start time
of the branching activityi ∈ C̄, respectively. Considering the specifications of both pruning techniques to reduce the
start time restriction of the branching activity,W ′

i ∩ W ′′
i = ∅ can easily be verified. SinceW ′

i ∩ W ′′
i = ∅ directly

impliesST (W
′) ∩ ST (W

′′) = ∅, Corollary 2 follows from Corollary 1.

Corollary 2. Let the UPT and the ULT be used in Algorithm 4, letSf ∈ S be any feasible schedule, and(C, S,W )
some node corresponding to the enumeration scheme of Algorithm 4 withC 6= V andSf ∈ ST (W ). Then there is
exactly one direct descendant node(C′, S′,W ′) which fulfills the conditionSf ∈ ST (W

′).

From Corollary 2, takingST (W
′) ⊆ ST (W ) for some node(C, S,W ) and any of its descendants(C′, S′,W ′) into

account, it can directly be derived that each candidate schedule is generated exactly once in the enumeration scheme if
both pruning techniques UPT and ULT are used. Furthermore, we can state that each part of the time-feasible region is
explored exactly once in the course of the enumeration scheme which can be seen as a prevention of any redundancy
in the search tree.

6 Branch-and-bound algorithm

In this section we present the general framework of our branch-and-bound algorithm which enables a wide range of
different settings concerned with the construction of the enumeration tree and the application of improving techniques.
The first part of this section is devoted to the search strategy of our branch-and-bound algorithm which determines the
way to construct the enumeration tree. In order to provide a generic framework for the construction of the search tree,
in line with Watermeyer and Zimmermann (2020) we divide the search strategy in different parts, called traversing,
branching, generation, and ordering strategy.

For the traversing strategy, which determines the node to beconsidered next in the course of the branch-and-bound
algorithm, we have implemented two alternatives. The first alternative is the well-known depth-first search (DFS),
while the second one is an extension of the DFS which selects,after a predefined time span, among all not completely
explored nodes with lowest search tree level, a node with thelowest bound on the project duration. In the following we
call this traversing strategy, which increases the diversification of investigated paths in the enumeration tree, scattered-
path search (SPS). After some node has been chosen to be explored next, the branching strategy determines the activity
which is considered in the branching step. For this, in a firststep, the so-called eligible setE ⊆ C̄, i.e., the set of all
activities which could be used for the branching step, is determined. The first alternative takes all not currently
scheduled activities into consideration (C̄), i.e.,E := C̄. In contrast, the other two alternatives, which are both based
on a strict order≺ in setV , reduce the set̄C, whereE ⊆ {i ∈ C̄ |Pred≺(i) ⊆ C} holds withPred≺(i) as the set of all
direct predecessors of activityi ∈ V in a precedence graphG≺ with V as the node set and the covering relationcr(≺)
of the strict order as the arc set. The strict orders we use in this work, have been introduced as distance order (≺D) and
cycle order (≺C) in Franck et al. (2001) and Neumann et al. (2003, Sect. 2.6).For further details we refer the reader
to those references. In the following, we assume that the eligible setE is given. Then in the next step of the branching
strategy, the activity with the best priority valueπi and the lowest index in setE is selected for the branching step.
Accordingly the branching activity is given by

i := min{i′ ∈ E | πi′ = ext
h∈E

πh},

where ext∈ {min,max} indicates if lower (min) or greater (max) priority values are preferred. In what follows, we
present some priority rules which have shown promising results in preliminary tests. First, we deal with priority rules
which have already been discussed in the literature (see, e.g., Kolisch, 1996; Franck et al., 2001) and are concerned with
the temporal constraints of the problem. These include among others the latest start time (LST) rule withπi = LSi and
the slack time (ST) rule withπi = LS i−ES i. For both priority rules we have also tested dynamic versions which take
the start time restrictions and the best found solutionUB into account which are given byπi = LSUB

i (W ) (LSTd) and
πi = LSUB

i (W )− ES i(W ) (STd) withLSUB

i (W ) := LS i(W,n+ 1,UB − 1). Additionally, we have implemented
a dynamic version of the ST rule (STdI) which considers the number of start times in the start time restriction by
πi = |Wi ∩ [ES i(W ),LSUB

i (W )]|. Further rules are given by the total successor (TS) rule with πi = |Reach≺(i)|
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andReach≺(i) as the set of all successors of activityi ∈ V in G≺, the path following (PF) rule withπi = l(i) and
l(i) as the maximal number of nodes on any longest directed path from nodei ∈ V to n + 1 in project networkN ,
and the maximal resource consumption (MRC) rule withπi = pi

∑
k∈Ri

rdik. In contrast to the priority rules from the
literature, the following rules make use of the properties of the partially renewable resources. For this, the maximal
possible additional resource consumptionpir

d
ik by an activity in relation to the maximal remaining resourcecapacity

R̄k is considered with
R̄k := Rk − rck(S

C)−
∑

i∈C̄

rcik(W,LSUB

i (W )).

We have tested the following two different versions. The total maximal additional relative resource consumption
(TMAR) rule with

πi = pi
∑

k∈Ri:R̄k 6=0

rdik
R̄k

+
∑

k∈Ri:R̄k=0

1,

and the average maximal additional relative resource consumption (AMAR) rule with πi = π′
i/|Ri| andπ′

i as the
priority value of the TMAR rule.

After the branching activity has been selected for some enumeration node, the last part of the search strategy is
concerned with the generation and the ordering of the directdescendants. For the generation strategy, we distinguish
between the possibilities either to generate all direct descendants (all) or to restrict the number of generated nodes by
a maximal value (restr), where one and the same node must possibly be explored more than once. Furthermore, we
have implemented different orders in which all start times in the reduced scheduling setTi of branching activityi ∈ E
are considered. The most intuitive alternative for this takes always the lowest start time fromTi which has not been
used so far to generate a direct descendant node (LT). The other alternative assigns a priority valueπt to each start
time t ∈ Ti and considers all start times inTi in an order of nondecreasing priority values (PV), where ties are broken
on the basis of lower start times. In what follows, we presentthe best priority value we have found so far to order the
start times inTi. The corresponding priority value

πt =
∑

k∈Ri

aikt +
1

4
max
k∈Ri

(bik)(t− ES i(W ))

with

aikt :=

{
rcik(t)/R̄k, if R̄k 6= 0

1, otherwise
and bik :=

{
rdik/R̄k, if R̄k 6= 0

1, otherwise

can be seen as a combination of a priority value which is highly related to the TMAR rule and a penalty term which
increases the priority value in a linear fashion based on thedifference between start timet and the earliestW -feasible
start timeES i(W ). Finally, after all direct descendant nodes have been generated, the ordering strategy determines the
order in which they are considered in the further course of the branch-and-bound algorithm. In this work, all generated
descendant nodes are explored in an order of nondecreasing lower bounds on the project duration (LB) which has
shown to provide good results in computational experiments.

Before we discuss our branch-and-bound algorithm in more detail, we have to make some additional notes correspond-
ing to the consistency tests. While until now we have considered all consistency tests separately from each other, it
is common practice to apply different consistency tests iteratively until no constraint can be deduced anymore or the
infeasibility of the considered search space is proven, i.e., the fixed point is reached. In our branch-and-bound algo-
rithm we consider three different sets of consistency testsΓB , ΓD, andΓW , whereΓB contains the temporal-bound
and the resource-bound consistency test,ΓD the temporal-bound and theD-interval consistency test, andΓW the
temporal and theW -interval consistency test. In order to increase the numberof inconsistent start times for each set
of consistency tests, the temporal constraintSn+1 < UB with UB as the project duration of the best found solution
in the course of the branch-and-bound procedure is established in addition. Furthermore, to restrict the computational
effort, we have used an iteration limitα. In the following, we denote byγα

β (W ) the start time restriction which results
if all consistency tests inΓβ are iteratively applied onW with an iteration limitα. To be able to differentiate between
the possibilities for theD-interval andW -interval consistency test to use all resources or only the resources which are
demanded by the activity, we use the notationsγα

β (W )[R] andγα
β (W )[Ri], respectively. Furthermore, we useα = ∞

to imply that the fixed point corresponding to setΓβ is determined.

In what follows, we outline the framework of our branch-and-bound procedure which is given in Algorithm 5. It
should be noted, that in order to simplify the presentation,we assume that a depth-first search (DFS) is used and that
all direct descendants of any enumeration node are generated at once (all). Accordingly, all other alternatives for the
traversing and the generation strategy are omitted. In the first part of Algorithm 5, a preprocessing step is performed
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Algorithm 5: Branch-and-bound algorithm

Input: Instance of problem RCPSP/max-π
Output: Optimal scheduleS∗

1 Determine distance matrixD = (dij)i,j∈V

2 ES i := d0i, LS i := −di0 for all i ∈ V
3 Wi := {ES i, . . . ,LS i} for all i ∈ V
4 Apply preprocessing onW
5 if ST (W ) = ∅ then terminate (S = ∅)
6 LBG := minWn+1

7 C := {0} S := minST (W ) LB := LBG

8 Ω := {(C, S,W,LB)} UB := d̄+ 1

9 while Ω 6= ∅ do
10 Remove(C, S,W,LB) from stackΩ
11 if LB < UB then
12 Apply consistency tests inΓD or ΓW onW

13 if SUB

T (W ) 6= ∅ then
14 Select activityi ∈ E and initializeΛ := ∅
15 Θi := {τ ∈ Wi | r

c
k(S

C) + rcik(τ) ≤ Rk for all k ∈ Ri}
16 Ti := ReducedSchedulingSet(Θi)
17 while Ti 6= ∅ do
18 Removet from setTi (according to the generation strategy)

19 S′
i := t S′ := min S̃T (W, i, S′

i) W ′ := (Wj \ [0, S
′
j [)j∈V

20 Apply consistency tests inΓB onW ′

21 if SUB

T (W ′) 6= ∅ then
22 S′ := minST (W

′)
23 if ∃j ∈ C : S′

j > Sj then
24 C′ := C \ {j ∈ C | S′

j > Sj}
25 else ifS′

i = t then
26 C′ := C ∪ {i}

27 if C′ = V then
28 S∗ := S′ UB := S∗

n+1 Ti := Ti \ [t+ 1,∞[
29 else
30 Compute lower boundLB ′

31 if LB ′ < UB then
32 Λ := Λ ∪ {(C′, S′,W ′,LB ′)}

33 Put all nodes fromΛ on stackΩ (according to the ordering strategy)
34 if UB = d̄+ 1 then terminate (S = ∅)
35 else returnS∗

on the start time restrictionW , for which we calculate the fixed point of setΓW considering all resources, which
means thatW := γ∞

W (W )[R] is set. In case that the preprocessing step cannot prove the infeasibility of the problem
instance (ST (W ) 6= ∅), the global lower boundLBG is set tominWn+1, the upper bound on the minimum project
durationUB is set tod̄+1, and the root node is initialized and put on stackΩ. In each iteration, an enumeration node
(C, S,W,LB) is removed from stackΩ and is checked if it could provide a solution with a better project duration than
UB , i.e.,LB < UB . In this case, consistency tests from setΓD or ΓW are applied on the start time restrictionW . If
the consistency tests can show that the considered node and all its descendants cannot generate any feasible schedule
with a better project duration thanUB , i.e.,SUB

T (W ) := ŜT (W,n+1,UB − 1) = ∅, the next enumeration node inΩ
is considered. Otherwise, based on the branching strategy,the eligible setE is determined and the branching activity
i ∈ E is selected, followed by the initialization ofΛ which is used to store all direct descendants of the considered
enumeration node. In the next step, analogously to Algorithm 4, the scheduling setΘi and the reduced scheduling
setTi are calculated, where the start times inTi are considered in an order depending on the generation strategy.
Given some start timet which has been removed fromTi, t is established as the earliest start time of the branching
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activity, where it should be noted that line 19 of Algorithm 5can be adapted as described in Sect. 5.3 to apply the
pruning techniques UPT and ULT. After the initialization (and update) of start time restrictionW ′, the consistency
tests from setΓB are applied onW ′, where the direct descendant node corresponding toW ′ is directly pruned from
the enumeration tree ifSUB

T (W ′) = ∅. Otherwise, in case that the existence of any feasible schedule inST (W
′) with

a better objective function value thanUB cannot be excluded, it is checked if some activities have to be unscheduled
or if the branching activity can be scheduled. IfC′ = V after the scheduling of the branching activity, a new best
feasible solutionS∗ := S′ has been found,UB is set toS∗

n+1, and all start times inTi which are greater thant are
removed, noticing that they cannot generate any better feasible solution. Otherwise, the lower boundLB ′ is calculated
for the descendant node which can either be given byLB0π(W ′) or LBDπ(W,ESn+1(W ),UB − 1). In case that
LB ′ < UB , the node is added to the listΛ which is used after the generation of all direct descendant nodes to put them
on the stackΩ in an order of nonincreasing values of their lower boundsLB ′. The described procedure reiterates until
there is no enumeration node left to be considered, i.e.,Ω = ∅. In case thatUB = d̄ + 1 at the end of the algorithm,
we can state that there is no feasible solution, while otherwise, Algorithm 5 returns an optimal solutionS∗.

7 Performance analysis

In this section we evaluate the performance of our branch-and-bound algorithm. For this, we conduct computational
experiments on different benchmark test sets with partially renewable resources. To provide a comprehensive investi-
gation, we compare our procedure with all available branch-and-bound algorithms from the literature for the RCPSP/
max-π and the RCPSP/π.

The computational experiments have been conducted on a workstation with an Intel Core i7-8700 CPU with a clock
pulse of 3.2 GHz and 64 GB RAM under Windows 10 on a single thread. The algorithms, we compare with each other
in this section, were all coded in C++ and compiled by the 64-bit Visual Studio 2017 C++-compiler.

7.1 General temporal constraints

In the first part of the performance analysis we compare our constructive branch-and-bound algorithm (CBB) with
the relaxation-based branch-and-bound procedure (RBB) inWatermeyer and Zimmermann (2020) whose favorable
performance has been shown by a comparison with the mixed-integer linear programming solver IBM CPLEX. To the
best of our knowledge, the RBB represents the only branch-and-bound algorithm (BnB) for the RCPSP/max-π which is
available in the open literature so far. For the comparison of the CBB with the RBB, we have conducted computational
studies on a benchmark test set which covers instance sets withn = 10, 20, 50, 100, 200 real activities, all of them with
30 partially renewable resources. The benchmark test set UBOπ, which is available online1, is an adaptation of the
well-known benchmark test set UBO for the RCPSP/max which has been generated by the instance generator ProGen/
max (Schwindt, 1996, 1998). As it is described in Watermeyerand Zimmermann (2020), the test sets for the RCPSP/
max-π, which are denoted by UBOnπ in the following, are the result of a replacement of the renewable resources by
partially renewable resources which are generated in accordance with the procedure in Schirmer (1999, Sect. 10).

Table 1 provides an overview of the settings we have used for the CBB in the computational experiments depending
on the instance size. While the most terms in Table 1 are in linewith Sect. 6, there are some additional specifications
which are explained in the following. The values in bracketsin Table 1 give the time span for the scattered path search,
the maximal number of generated nodes in one branching step for the generation strategy, and the maximal search tree
level on which the sets of consistency tests are applied. Thevalues in parentheses indicate if lower (min) or greater
(max) priority values or lower bounds are preferred. It should be noted that Table 1 lists the settings which have shown
the best balance between the number of instances which couldbe solved to optimality and whose solvability status
remained open among all settings we have tested.

As it can be seen in Table 1, the restriction of the eligible set for the branching step in accordance with strict orders
(≺D,≺C) is only beneficial for greater instances. Furthermore, thecomputational studies reveal that resource-based
priority values are preferable for small instances to select the branching activity, whereas temporal-based or network-
based priority values are better suited for greater instances. It is also worth mentioning that the SPS and the usage
of priority values for the generation of direct descendant nodes (PV) have both a great impact on the performance
for greater instances. Finally, taking a look on the improving techniques, Table 1 shows that it is beneficial over all
instances to use the UPT and to calculate the fixed pointγ∞

B in each enumeration node, while additional procedures
can enhance the performance just for a few test sets.

Table 2 shows the performance of the CBB and the RBB, where it is distinguished between CBB1 and CBB2 to
indicate if the first or the second version to calculate the reduced scheduling setTi is applied (see Algorithms 2 and

1https://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung/benchmark-instances/
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UBO10π UBO20π UBO50π UBO100π UBO200π

Traversing strategy DFS SPS [2 s] SPS [5 s] SPS [5 s] SPS [15 s]

Branching strategy C̄, MRC(max) C̄, MRC(max) ≺D, STdI(min) ≺C, PF(max) ≺C, PF(max)

Generation strategy restr-LT [10] restr-LT [10] restr-PV [5] restr-PV [15] restr-PV [30]

Ordering strategy LB(min) LB(min) LB(min) LB(min) LB(min)

Consistency tests γ∞
B γ∞

B , γ1
D[Ri, 2] γ∞

B , γ1
W [Ri] γ∞

B , γ1
W [Ri, 2] γ∞

B

Lower bound LBDπ LBDπ LBDπ LB0π LB0π

Pruning techniques UPT UPT UPT+ULT UPT+ULT UPT

Table 1: Settings for the performance analysis

3). For the performance analysis, we have used a time limit of300 seconds. The results for the RBB are taken
from Watermeyer and Zimmermann (2020), where the RBB has been tested on the same workstation under the same
conditions as the CBB. In the first column, Table 2 gives the number of instances for which the earliest start time
scheduleES is not optimal (#nTriv), so-called non-trivial instances in line with Alvarez-Valdes et al. (2008). Since
trivial instances can efficiently be solved to optimality, they are excluded from all investigations in the remainder of
this work. The following columns list for each instance set the number of instances for which an optimal solution
is found and proven to be optimal (#opt), infeasibility is shown (#inf), a feasible solution is found whose optimality
is not proven (#feas) or the solvability status remains open(#open). Finally, the last two columns show the average
computational time over all instances which are solved to optimality (∅cpu

opt) and are shown to be infeasible (∅cpu
inf ).

#nTriv #opt #feas #inf #open ∅cpu
opt ∅cpu

inf

UBO10π
CBB1

693
534 534 159 0 0.067 s 0.056 s

CBB2 534 534 159 0 0.068 s 0.056 s
RBB 534 534 159 0 0.040 s 0.004 s

UBO20π
CBB1

621
537 581 40 0 7.846 s 0.702 s

CBB2 535 581 40 0 7.354 s 0.721 s
RBB 500 578 40 3 8.076 s 8.006 s

UBO50π
CBB1

527
183 491 5 31 13.774 s 26.827 s

CBB2 183 491 5 31 14.082 s 26.911 s
RBB 145 486 3 38 8.022 s 0.279 s

UBO100π
CBB1

484
85 472 0 12 14.307 s –

CBB2 84 472 0 12 14.527 s –
RBB 79 465 0 19 20.681 s –

UBO200π
CBB1

466
93 446 0 20 23.447 s –

CBB2 92 445 0 21 24.419 s –
RBB 79 466 0 0 28.271 s –

Table 2: Performance of CBB and RBB (300 s)

First, we can observe that CBB1 dominates CBB2 over all instances, even though there is no great difference between
both versions. Based on this, for all following investigations, we assume CBB to be conducted with Algorithm 2 to
calculate the reduced scheduling set. Considering the performance of the CBB and the RBB, Table 2 shows a great
dominance of the CBB for instance sets UBO20π, UBO50π, and UBO100π, whereas the RBB is able to solve the
test set UBO10π in less computational time. The results for instance set UBO200π are in some way unexpected with
respect to the results for the smaller instances. While the CBB is able to solve more instances to optimality than
the RBB, there are some instances for which the solvability status remains open which are shown to be feasible by
the RBB. The reason for this may be suspected in the increase of the difficulty to determine if some start time of
a branching activity could lead to a feasible solution with the increase of the number of activities in the project. It
should be noted that this result gives an important implication for heuristic procedures concerned with the generation
of feasible solutions for the RCPSP/max-π. Since the results for the test set UBO200π suggests that serial schedule-
generation schemes which are based on the constructive procedure as described for the CBB might lack the ability to
find feasible solutions for large instances, generation schemes based on the RBB should be taken into account as well
for schedule-generation procedures.

In order to evaluate the quality of the best found solutions by the CBB for which the optimality could not be shown,
Table 3 compares the project durations of the best solutionswhich have been found within a time limit of 300 seconds
by the CBB with those of the RBB. The first part of Table 3 gives an overview about the number of instances for
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which a feasible solution has been found by at least one (#∪

feas) or by both procedures (#∩feas), followed by the number of
instances for which only the CBB (#<

feas) or the RBB (#>feas) was able to find a feasible solution.

instance set #∪feas #∩

feas #<

feas #>

feas #∩,nv
feas #< #= #> ∅∆,abs

RBB ∅∆,rel
RBB

UBO20π 581 578 3 0 79 37 32 10 -2.37 -1.55 %
UBO50π 491 486 5 0 344 290 38 16 -16.87 -4.74 %
UBO100π 472 465 7 0 390 243 31 116 -14.51 -2.42 %
UBO200π 466 446 0 20 372 202 13 157 -7.06 0.49 %

Table 3: Comparison of the feasible solutions of CBB with RBB(300 s)

As it can be seen for the test sets UBO20π, UBO50π, and UBO100π in Table 3, the CBB is able to find a feasible
solution for more instances than the RBB, where in addition there is no instance for which only the RBB detects
a feasible solution. In contrast, in accordance with the results in Table 2, the opposite is the case for the test set
UBO200π. In the second part of Table 3, the quality of the feasible solutions are compared with each other. The
first column gives the number of instances for which both procedures have found a feasible solution, but not both
procedures could verify the optimality for (#∩,nv

feas ). These instances are subdivided into the number of instances with a
better (#<), an equal (#=), or a worse (#>) found solution by the CBB compared with the solution of the RBB. The
last two columns are concerned with the average deviations of the project durations of the best found solutions by the
CBB to those of the RBB, which are assumed to be given bySCBB

n+1 andSRBB
n+1, respectively. In the first column, the

average absolute deviation∆abs
RBB := SCBB

n+1 − SRBB
n+1 over all considered instances (∅∆,abs

RBB ) is given, while the second
column depicts the average relative deviation∆rel

RBB := ∆abs
RBB/S

RBB
n+1 to the project duration of the best found solution by

the RBB (∅∆,rel
RBB ). The second part of Table 3 shows that the CBB can obtain overall instance sets for more instances

a feasible solution with a better objective function value than the RBB, where it should be noted that the difference
to the number of instances for which the RBB could find a bettersolution decreases with the increase in the instance
size. Furthermore, the last two columns indicate a dominance of the CBB in the sense of a better quality of the found
solutions on average for all instance sets, except for UBO200π, for which a positive average relative deviation can be
observed.

In order to illustrate the impact of the improving techniques on the performance of the CBB, Table 4 shows the results
for test set UBO20π with a time limit of 300 seconds if the search strategy in accordance with Table 1 is applied with
different combinations of the given improving techniques.In the first two lines, the results of the CBB are given if it
is conducted without any improving technique, except that the lower boundLB0π is calculated in any enumeration
node, termed basic version in the following. To investigatethe benefit to calculate the reduced scheduling setTi for
the branching step, in Table 4 the results of two different basic versions of the CBB are listed which consider the start
times inΘi or Ti, respectively. In the following lines, the improving techniques from Table 1 are individually added
to the basic version of the CBB, where it can be seen that the calculation of the reduced scheduling set as well as all
improving techniques enhance the performance of the CBB with a significant reduction in the total computing time
tcpu.

#opt #feas #inf #open ∅cpu
opt ∅cpu

inf tcpu

BnB (basic versionΘi) 120 546 3 72 29.134 s 49.019 s 153,043 s
BnB (basic versionTi) 142 560 5 56 25.654 s 65.402 s 146,170 s
+Preprocessing 214 567 22 32 23.165 s 0.493 s 120,468 s
+LBDπ 222 567 22 32 24.408 s 1.010 s 118,541 s
+Consistency tests 343 576 23 22 10.667 s 0.363 s 80,167 s
+UPT 537 581 40 0 7.846 s 0.702 s 17,442 s

Table 4: Impact of components on the performance for instance set UBO20π (300 s)

7.2 Precedence constraints

In this section we investigate the performance of the CBB on benchmark test sets for the RCPSP/π. To evaluate the
performance, the CBB is compared with the RBB and the only available BnB for the RCPSP/π (BOT) which has
been developed in Böttcher et al. (1999). Since the originalcode for the BOT could not be provided to us, we have
reimplemented the BOT in line with Böttcher (1995) and Böttcher et al. (1999). As preliminary tests have shown, the
best results for the BOT are obtained if the feasibility bounds FB1 and FB2 as described in Böttcher et al. (1999) are
used. Hence, we have used both feasibility bounds in all computational experiments on the BOT.
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The first benchmark test set contains 2160 instances with 10 real activities (P10π) and 250 instances with 15, 20, 25,
and 30 real activities (P15π, P20π, P25π, P30π), respectively, where all of them have been generated with 30 partially
renewable resources. These test sets have been used in Alvarez-Valdes et al. (2006, 2008) for a performance analysis
and were provided to them by the authors of Böttcher et al. (1999). Table 5 shows the results of an experimental
performance analysis on the Böttcher instances with a time limit of 300 seconds. For the CBB and the RBB we have
used the settings of test set UBO20π, except for test set P25π, for which we have conducted the computational tests
on the CBB with the settings of test set UBO50π. Table 5 shows that both the CBB and the RBB dominate the BOT
over all instances, while only small differences can be observed between the CBB and the RBB, except that the RBB
tend to show lower computing times.

#nTriv #opt #feas #inf #open ∅cpu
opt ∅cpu

inf

P10π
CBB

2108
827 827 1281 0 0.056 s 0.054 s

RBB 827 827 1281 0 0.007 s 0.007 s
BOT 827 827 1281 0 0.023 s 0.023 s

P15π
CBB

204
188 188 16 0 1.845 s 0.051 s

RBB 188 188 16 0 2.114 s 0.002 s
BOT 181 181 16 7 2.727 s 0.036 s

P20π
CBB

165
139 142 17 6 0.112 s 0.052 s

RBB 139 142 17 6 0.660 s 0.002 s
BOT 136 139 16 10 3.974 s 2.187 s

P25π
CBB

136
112 116 14 6 0.109 s 0.062 s

RBB 112 115 14 7 0.018 s 0.010 s
BOT 105 111 11 14 0.465 s 25.457 s

P30π
CBB

122
104 104 8 10 0.072 s 0.053 s

RBB 104 104 8 10 0.029 s 0.003 s
BOT 98 104 3 15 2.095 s 0.196 s

Table 5: Performance on the Böttcher benchmark set (300 s)

The second benchmark set for the RCPSP/π was generated by Schirmer (1999) and has later been extendedby Alvarez-
Valdes et al. (2006, 2008). The test sets of Schirmer (1999) cover 960 instances with 10, 20, 30, and 40 real activities
(j10, j20, j30, j40), respectively, with 30 partially renewable resources. Later, Alvarez-Valdes et al. (2006, 2008) added
a test set with 960 instances, each of them with 60 real activities (j60) and 30 partially renewable resources. It should
be noted that 9 instances of test set j10 which have been proven to be infeasible in Schirmer (1999, Sect. 10.4) could
not be provided to us, so that they are not part of the performance analysis. In Table 6, the results of the computational
tests on the Schirmer and Alvarez-Valdes instances are given with a time limit of 300 seconds. As for the Böttcher
instances, we have used the settings of test set UBO20π for the CBB and the RBB for the computational experiments,
with the only exception that the CBB was conducted with the settings of UBO50π for test set j60. Table 6 reveals
that both the CBB and the RBB outperform the BOT for the Schirmer-Alvarez-Valdes benchmark set. Furthermore,
Table 6 shows slightly better results for the CBB compared tothose of the RBB.

#nTriv #opt #feas #inf #open ∅cpu
opt ∅cpu

inf

j10
CBB 803 803 5 0 0.063 0.055
RBB 808 803 803 5 0 0.060 0.052
BOT 802 802 5 1 0.171 0.041

j20
CBB 563 565 0 0 0.906 –
RBB 565 564 565 0 0 1.785 –
BOT 509 561 0 4 6.436 –

j30
CBB 431 453 0 0 3.189 –
RBB 453 427 453 0 0 3.717 –
BOT 345 435 0 18 5.573 –

j40
CBB 347 386 0 0 5.386 –
RBB 386 341 386 0 0 4.103 –
BOT 261 363 0 23 4.376 –

j60
CBB 269 346 0 0 8.476 –
RBB 346 268 346 0 0 2.172 –
BOT 186 309 0 37 2.502 –

Table 6: Performance on the Schirmer-Alvarez-Valdes benchmark set (300 s)
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8 Conclusions

We have presented a branch-and-bound algorithm (BnB) for the resource-constrained project scheduling problem with
partially renewable resources and general temporal constraints (RCPSP/max-π). The enumeration of the BnB is based
on a serial schedule-generation scheme with an unscheduling step. For the basic procedure of our BnB, we have shown
how domains for the start times can be included to apply improving techniques from the literature. Moreover, we have
developed further techniques to reduce the enumeration tree which are able to prevent redundancies in the course of
the enumeration.

In a comprehensive performance analysis we have compared our exact solution procedure with all BnB which are
available in the open literature for the RCPSP/max-π and the RCPSP/π. The computational experiments could reveal
a great dominance of our BnB for instances with up to 100 activities for the RCPSP/max-π. Furthermore, the favorable
performance could also be confirmed for instances of the RCPSP/π, where especially a great dominance over the only
available BnB for the RCPSP/π could be demonstrated.

As the computational experiment has shown, the performanceof a BnB for the RCPSP/max-π is strongly influenced
by the way to enumerate the candidate solutions. Therefore,the investigation of further enumeration schemes seems
to be a promising field for future research, where a particular focus should be put on the prevention of redundancies
and on an efficient integration of consistency tests.
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