
Exact Solution Procedures for RCPSP/π

Kai Watermeyer, Marc-André Aßbrock, Stefan Kreter, and Jürgen Zimmermann

Clausthal University of Technology, Germany
{marc-andre.assbrock,stefan.kreter,juergen.zimmermann}@tu-clausthal.de

Keywords: Project scheduling, Partially renewable resources, Integer linear programming,
Constraint programming, Lazy clause generation.

1 Introduction

In this paper we consider exact solution procedures for the resource-constrained project
scheduling problem under partially renewable resources (RCPSP/π). For the first time, a
constraint programming (CP) formulation for that problem is presented. More precisely, we
investigate the results obtained by the CP solver IBM CP Optimizer and the lazy clause
generation (LCG) solver CHUFFED for this new formulation and take also two integer
linear programming (ILP) models into account which are solved using IBM CPLEX.

For partially renewable resources the availability is associated to a subset of periods
of the planning horizon. The resource requirement of activities that consume partially re-
newable resources for their execution may not exceed a resource capacity given for the
corresponding subset of periods. For all other periods, the resource requirement is not re-
stricted. Partially renewable resources include renewable and non-renewable resources as
special cases and can be used to model typical labor regulations and timetabling constraints
(Álvarez-Valdés et al. 2015). Although many real world applications can be modeled by
project scheduling problems under partially renewable resources, only few authors inves-
tigated this type of resource so far. Böttcher et al. (1999) introduced RCPSP/π and pre-
sented an enumeration scheme and an ILP formulation as well as approximation methods.
Schirmer (2000) presented examples of conditions that can be modeled by partially renew-
able resources and heuristic solution methods. Heuristic procedures for RCPSP/π were
also developed by Álvarez-Valdés et al. (2006, 2008, 2015). In addition, Álvarez-Valdés et
al. presented some preprocessing steps to identify trivial problem instances and reduce the
problem size, respectively.

In recent years, CP techniques were more and more used to solve project scheduling
problems and provide very good results, e.g., for RCPSP. In the following, we investigate
if this success of CP can be identified also for RCPSP/π.

In Section 2 the RCPSP/π is described formally. Section 3 presents the ILP formulation
from Böttcher et al. (1999) and an alternative approach to model the resource constraints.
The idea for this alternative modeling approach is used in Section 4 to introduce a CP
formulation, which can be solved using classical CP solvers as well as LCG solvers. Finally,
in Section 5 a performance study on instances from literature and conclusions are given.

2 Problem description

The project in question is given by an activity-on-node network N = (V,A) where the
set of nodes V corresponds to n activities 1, . . . , n that have to be carried out without
interruption, as well as to two fictitious activities 0 (source of N) and n + 1 (sink of N)
that represent the beginning and the completion of the project, respectively. A is the set of
arcs in N and each arc 〈i, j〉 ∈ A represents a precedence relation between activities i and
j, i.e., activity j cannot be started before activity i is completed. With pi ∈ N0 we denote

the processing time of activity i ∈ V , where p0 = pn+1 := 0, and Si ∈ N0 is the start time
of i. We assume that every project starts at time 0, i.e., S0 := 0 and therefore Sn+1 equals
the project duration. The set of partially renewable resources needed for carrying out the
project activities is given by R. For each k ∈ R a subset of periods of the planning horizon
Πk and a resource capacity Rk is given. Activity i ∈ V consumes rik units of resource k in
each time period out of set {Si, Si+1, . . . , Si+pi−1}∩Πk. A vector S = (S0, S1, . . . , Sn+1)
of start times for all activities i ∈ V is termed a schedule. A schedule is said to be feasible
if it satisfies all temporal and resource constraints. Given some schedule S and point in
time t the active set A(S, t) := {i ∈ V | Si ≤ t < Si + pi} contains all activities that are
started at a point in time less or equal than t and that are not finished until time t. Then,
rk(S, t) :=

∑
i∈A(S,t) rik is the total amount of resource k ∈ R required to carry out those

activities in progress at time t ∈ Πk. A mathematical formulation for RCPSP/π can be
given by

Minimize Sn+1 (1)
subject to Sj ≥ Si + pi 〈i, j〉 ∈ A (2)∑

t∈Πk

rk(S, t) ≤ Rk k ∈ R (3)

Si ∈Wi i ∈ V. (4)

The objective (1) is to minimize the project duration which is realized by minimizing the
start time of the project end. Constraints (2) ensure the given precedence relations and
inequalities (3) guarantee that the total amount of required units of resource k ∈ R within
periods Πk does not exceed the resource capacity Rk. Constraints (4) restrict the domain
for the start time Si of every activity i ∈ V to Wi := {ESi, . . . , LSi}, with ESi and LSi
being the earliest and latest time feasible start time of i, respectively. ESi and LSi can be
calculated with a label-correcting algorithm.

3 ILP formulations for RCPSP/π

The ILP formulation for RCPSP/π from Böttcher et al. (1999) makes use of time-
indexed binary decision variables xit that equal 1 if activity i ∈ V starts at time t ∈ Wi

and 0 otherwise. The formulation is given by

Minimize
∑

t∈Wn+1
t · xn+1,t (5)

subject to
∑

t∈Wi

xit = 1 i ∈ V (6)∑
t∈Wj

t · xjt ≥
∑

t∈Wi

t · xit + pi 〈i, j〉 ∈ A (7)∑
i∈V

rik
∑

t∈Πk

∑
τ∈Qit∩Wi

xiτ ≤ Rk k ∈ R (8)

xit ∈ {0, 1} i ∈ V, t ∈Wi. (9)

Since Si =
∑
t∈Wi

t · xit holds, constraint (5) corresponds to (1) and constraint set (7)
corresponds to (2). Equations (6) ensure that each activity i ∈ V is started at exactly one
point in time out of set Wi. With Qit := {t− pi + 1, . . . , t} being the set of possible start
times for that activity i is in the active set at time t, the left hand side of constraint set (8)
equals the total requirement on resource k ∈ R within time periods Πk and therefore the
resource capacity Rk is not exceeded.

Within their branch-and-bound algorithm, Böttcher et al. (1999) make use of the con-
sumption scikt := |{t, t+ 1, . . . , t+ pi − 1} ∩Πk| · rik of activity i ∈ V on resource k ∈ R

when started in period t ∈Wi. The resource restrictions (8) can thus be rewritten as∑
i∈V

∑
t∈Wi

xit · scikt ≤ Rk k ∈ R. (10)

In the next section we show how values scikt can be used to give a CP formulation for
RCPSP/π.

4 A CP formulation for RCPSP/π

A CP formulation is given by a set of decision variables with corresponding domains
and constraints that link variables to some other variables. Within CP solvers constraint
propagation and search algorithms are strictly separated. Constraint propagation can be
understood as the process of generating additional constraints from existing constraints
and therefore reducing the domains of the decision variables. Search algorithms are used
to systematically explore the solution space (Baptiste et al. 2001).

A CP formulation for RCPSP/π that can be solved using IBM CP Optimizer as well
as the LCG solver CHUFFED can be given by

Minimize Sn+1 (11)
subject to Sj ≥ Si + pi 〈i, j〉 ∈ A (12)

element(Si, scik, sc′
ik) i ∈ V, k ∈ R (13)∑

i∈V
sc′
ik ≤ Rk k ∈ R (14)

Si ∈Wi i ∈ V. (15)

To ensure that decision variable sc′
ik takes the correct value scikSi

element constraints are
used in (13), where scik is an array containing for all t ∈Wi the corresponding scikt value.

Within the constraint propagation based solver IBM CP Optimizer we use interval vari-
ables (IloIntervalVar) to model the project activities and end-to-start constraints (IloEnd-
BeforeStart) to model the precedence relations (12).

LCG is a hybrid CP approach that combines features from SAT solving and finite
domain propagation (Ohrimenko et al. 2009). It is the state of the art solution method
for RCPSP, RCPSP/max, and RCPSP/max-cal (cf. Schutt et al. 2011, 2013; Kreter et al.
2015).

5 Performance study and conclusions

To test the introduced formulations we used the test set from Schirmer (2000) and the
extension of that test set from Álvarez-Valdés et al. (2006). We excluded trivial instances
from our study, as Álvarez-Valdés et al. (2006) did. An instance is called trivial, if the
schedule where every activity is started at its earliest time feasible start time is feasible.
In contrast to Álvarez-Valdés et al. (2006), we did not perform their whole preprocessing
procedure, because preliminary tests showed that this is not beneficial for the regarded
solution approaches when considering the overall run time.

All tests were conducted on an Intel Core i7-2760QM with a frequency of 2.4GHz
and 8GB RAM. The following table summarizes the results for the ILP formulation of
Böttcher et al. (1999) (ILPB), the ILP formulation with alternative resource constraints
(10) (ILPSC), both solved by IBM CPLEX, and the CP-formulation solved by IBM CP
Optimizer (CPO) and the LCG solver CHUFFED (LCG). The first column in Table 1
states the number of activities (n) and the second column states the number of remaining
non-trivial instances. For every formulation ILPB, ILPSC, CPO, and LCG the left-hand

column states the average CPU time in seconds (∅CT) and the right-hand column states
the number of instances for that the optimality was proven within the run time limit of
10 minutes (#SOL). For instances that could not be solved to optimality within the time
limit, 10 minutes are taken into account when computing ∅CT. The instances with 10 and
20 activities were solved by all solution approaches in less than one second of average run
time, so we did not include them in the table.

Table 1. Computation times and percentage of instances solved
n #instances ILPB ILPSC CPO LCG

∅CT #SOL ∅CT #SOL ∅CT #SOL ∅CT #SOL
30 453 2.80 453 2.78 453 1.22 453 0.66 453
40 386 11.46 385 11.38 385 9.19 384 7.26 384
60 346 61.61 328 61.41 328 56.17 320 49.91 321

Both ILP formulations find more optimal solutions than the CP approaches for instances
with 40 and 60 activities and are significantly faster for some of the test instances. In
contrast, the average run times of CPO and LCG are smaller than those obtained by ILPB
and ILPSC. These results show that none of the combinations of formulation and solver
is preferable to all instances. Combining the results of all combinations we were able to
close all open test instances with up to 40 activities. In the future we plan to investigate
structural properties of the instances in order to find out which instances should be solved
by which method. In addition, disaggregated precedence constraints can be used in the
ILP formulations to improve the LP-relaxation.

Acknowledgements

We would like to thank Ramón Álvarez-Valdés for providing us with the test instances.

References

Álvarez-Valdés R., E. Crespo, J.M. Tamarit and F. Villa, 2006, “GRASP and path relinking
for project scheduling under partially renewable resources”, European Journal of Operational
Research, Vol. 189, pp. 1153-1170.

Álvarez-Valdés R., E. Crespo, J.M. Tamarit and F. Villa, 2008, “A scatter search algorithm for
project scheduling under partially renewable resources”, Journal of Heuristics, Vol. 12, pp.
95-113.

Álvarez-Valdés R., J.M. Tamarit and F. Villa, 2015, “Partially Renewable Resources”. In: Schwindt
C. and J. Zimmermann (Eds.), Handbook on Project Management and Scheduling, Vol. 1,
Springer, Cham et alibi, pp. 203-227.

Baptiste P., C. Le Pape and W. Nuijten, 2001, “Constraint-Based Scheduling”, Kluwer Academic
Publishers, Norwell, MA.

Böttcher J., A. Drexl, R. Kolisch and F. Salewski, 1999, “Project scheduling under partially
renewable resource constraints”, Management Science, Vol. 45, pp. 544-559.

Kreter S., A. Schutt and P.J. Stuckey, 2015, “Modeling and solving project scheduling with cal-
endars”. In: Pesant, G. (Ed.), Principles and Practice of Constraint Programming – CP 2015,
Vol. 9255 of Lecture Notes in Computer Science, Springer, Cham et alibi, pp. 262-278.

Ohrimenko O., P.J. Stuckey and M. Codish, 2009, “Propagation via lazy clause generation”,
Constraints, Vol. 14, pp. 357-391.

Schirmer A., 2000, “Project scheduling with scarce resources”, Dr. Kovac, Hamburg.
Schutt A., T. Feydy, P.J. Stuckey and M.G. Wallace, 2011, “Explaining the cumulative propaga-

tor”, Constraints, Vol. 16, pp. 250-282.
Schutt A., T. Feydy, P.J. Stuckey and M.G. Wallace, 2013, “Solving RCPSP/max by lazy clause

generation”, Journal of Scheduling, Vol. 16, pp. 273-289.

