
A Branch-and-Bound Procedure for the

Resource-Constrained Project Scheduling Problem

with Partially Renewable Resources and Time

Windows

Kai Watermeyer and Jürgen Zimmermann

Clausthal University of Technology, Germany
kai.watermeyer, juergen.zimmermann@tu-clausthal.de

Keywords: Project scheduling, Partially renewable resources, Branch-and-bound.

1 Introduction

In this paper we present a branch-and-bound procedure for the resource-constrained
project scheduling problem with partially renewable resources and time windows (RCPSP/
max,π). For the first time the concept of partially renewable resources is embedded in the
context of projects with general temporal constraints.

Partially renewable resources were introduced by Böttcher et al. (1996) and have just
been considered for projects restricted to precedence constraints (RCPSP/π). For each par-
tially renewable resource a resource capacity for a subset of time periods of the planning
horizon is given. In this way timetabling and complex labor regulation problems can be
modeled as project scheduling problems (Álvarez-Valdés et al. 2006). For the RCPSP/π a
branch-and-bound procedure has been developed in Böttcher et al. (1999) and also approx-
imation procedures in Schirmer (1999) and Álvarez-Valdés et al. (2006, 2008) have been
investigated.

In Section 2 the RCPSP/max,π is described formally. Section 3 presents the enumera-
tion scheme the developed branch-and-bound procedure is based on and in Section 4 the
branch-and-bound procedure is outlined. Finally, in Section 5 the results of a computa-
tional study are presented where we compared the performance of our branch-and-bound
procedure with the outcome of the mixed-integer linear programming solver IBM CPLEX.

2 Problem description

The resource-constrained project scheduling problem with time windows and partially
renewable resources (RCPSP/max,π) can be modeled as an activity-on-node network where
the nodes correspond to all activities of the project V = {0, 1, . . . , n + 1} with n real
activities and the fictitious activities 0 and n + 1 representing the start and end of the
project, respectively. Each activity i ∈ V is assigned a non-interuptible processing time
pi ∈ Z≥0 and a resource demand rd

ik ∈ Z≥0 for each partially renewable resource k ∈ R
considered in the project. The arcs of the network given by the set E ⊆ V ×V represent the
temporal constraints between the activities where the arc weight δij ∈ Z for arc 〈i, j〉 ∈ E

implicates a minimal time lag between the start times of activity i and activity j which
has to be fulfilled. For each resource k ∈ R a resource capacity Rk and a subset of time
periods of the whole planning horizon Πk ⊆ {1, 2, . . . , d̄} is given with d̄ as a given maximal
project duration. It is assumed that an activity i just consumes a resource k with rd

ik units
in each time period of Πk activity i is in execution where the start times of all activities
are restricted to integer values. The number of time periods an activity i with start time
point Si is in execution during the defined time periods of resource k is given by the so

259

called resource usage ru
ik(Si) := |{Si +1, Si +2, . . . , Si +pi}∩Πk| so that the corresponding

resource consumption can be determined by rc
ik(Si) := ru

ik(Si) · rd
ik.

The objective of the problem is to assign each activity i ∈ V a start time Si so that
all time and resource constraints are fulfilled and the project duration is minimized. In the
following a sequence of start times of all activities S = (S0, S1, . . . , Sn+1) with S0 := 0
is called a schedule where it is said to be time-feasible, resource-feasible or feasible if it
fulfills all temporal constraints, all resource constraints or all constraints, respectively. The
problem RCPSP/max,π can be stated as follows:

Minimize f(S) = Sn+1

subject to Sj − Si ≥ δij (〈i, j〉 ∈ E)

S0 = 0∑
i∈V

rc
ik(Si) ≤ Rk (k ∈ R)

Si ∈ Z≥0 (i ∈ V)

3 Enumeration scheme

The enumeration scheme of the developed branch-and-bound procedure is based on
a stepwise restriction of the allowed resource usages of the activities of the project. The
procedure starts with the determination of the earliest possible start times ESi of all
activities i ∈ V for the resource-relaxation of RCPSP/max,π. If this schedule is resource-
feasible the optimal solution is already found. Otherwise there is at least one resource k

whose resource capacity Rk is exceeded so that the resource usage of at least one activity
consuming resource k have to be decreased to get a feasible schedule. The enumeration
scheme makes use of the start time dependency of the resource usage ru

ik(·) of all activities
i ∈ V for resource k. It is easy to see that for a feasible schedule S the resource usage
of at least one activity i ∈ V has to be lower than the resource usage of the resource-
infeasible schedule ES, i.e., ru

ik(Si) ≤ ru
ik(ESi) − 1. So we preserve all feasible schedules

by branching the resource-relaxation in subproblems where each subproblem restricts the
resource usage of an activity i with ru

ik(ESi) > 0 to ru
ik(ESi) − 1. The resource usage

restriction of activity i for resource k is achieved by permitting only start time points t with
ru

ik(t) ≤ ru
ik(ESi) − 1. In order to save these permitted start time points for all activities in

the enumeration process a so called start time restriction Wi for each activity is introduced.
This is set to Wi := {ESi, ESi+1, . . . , LSi} for each activity at the beginning of the process
with LSi as the latest possible start time point of activity i for the resource-relaxation of
RCPSP/max,π. For the subproblem in which the resource usage of activity i is restricted
the start time restriction is set to Wi := Wi ∩ {t ∈ {0, 1, . . . , d̄} | ru

ik(t) ≤ ru
ik(ESi) − 1}

so that the resource usage of activity i of resource k is lower or equal to ru
ik(ESi) − 1 if

activity i starts at time point t ∈ Wi. For each achieved subproblem the earliest possible
start time points of all activities have to be determined so that all temporal constraints of
the RCPSP/max,π are fulfilled and also Si ∈ Wi for each i ∈ V is satisfied. This can be
done by a modified label correcting algorithm which determines the earliest possible start
time points denoted by ESi(W) of all activities i ∈ V with a worst-case time complexity
of O(|V ||E| (1 + B)) with B as the number of interruptions of consecutive time points in
Wi over all activities i ∈ V . If all determined and all following subproblems are tackled
like described for the resource-relaxation of the RCPSP/max,π it can be shown that the
procedure determines after a finite number of iterations an optimal schedule or shows the
infeasibility if there is no optimal schedule.

260

4 Branch-and-bound procedure

The enumeration scheme describes the decomposition of the currently considered part of
the solution space in one or more components for a chosen conflict resource, i.e., a resource
whose capacity is exceeded. The strategy to decide which of the conflict resources is used
next to decompose the solution space is called branching strategy. The way to determine
which node in the enumeration tree is considered next is called search strategy. For both
strategies different approaches have been investigated on benchmark test sets.

Before the branch-and-bound procedure is started a preprocessing phase is conducted.
In this step start time points of activities are eliminated for which it can be shown that
they cannot be part of any of the feasible schedules. For this a start time point of an
activity is eliminated if the resource consumption of the activity started at this time point
and the sum of the minimal resource consumptions of all other activities over all start time
points satisfying the temporal constraints to the considered activity exceeds the capacity
of at least one resource.

Furthermore, for each node in the search tree two lower bounds for the project duration
are determined to be able to prune this node and the following parts of the enumeration
tree if one of these lower bounds is greater or equal to the project duration of the best found
solution so far. The first lower bound is given by the minimal possible project duration
taking the start time restrictions of all activities into consideration. The second lower bound
is equal to the minimal project duration for which at least one resource-feasible schedule
in the currently considered part of the search tree exists so that all temporal constraints
to the start and the end of the project are satisfied.

To reduce the search tree even further a dominance rule is used in addition. For this
an unexplored node is called dominated by another node if the restrictions of the resource
usages over all activities and resources are lower or equal to the resource usage restrictions
of the other node. In this case the unexplored node is pruned from the search tree.

5 Performance analysis

In order to evaluate the performance of our branch-and-bound (BnB) procedure we have
compared the obtained results with the outcome of the mixed-integer linear programming
(MILP) solver IBM CPLEX in the latest version 12.7.1. The computational study was
conducted on a PC with Intel Core i7-3820 CPU with 3.6 GHz and 32 GB RAM under
Windows 7. The BnB procedure was coded in C++ and compiled with the 64-bit Visual
Studio 2015 C++-Compiler. The instance sets we have used are adaptions of the well-
known benchmark test set UBO (Schwindt 1998) where we replaced the included renewable
resources by 30 partially renewable resources using the generation procedure described in
Schirmer (1999). Note that there is no instance with a project network containing a cycle
of positive length. In this manner we have generated 729 instances with 10, 20, 50, 100,
and 200 activities, respectively. For the computational study we set the runtime limit to
60 seconds and used an adaption of the MILP given in Böttcher et al. (1999) for the IBM

CPLEX solver. The mathematical program is given as follows:

Minimize
∑

t∈Tn+1

t · xn+1,t

subject to
∑

t∈Ti

xit = 1 (i ∈ V)∑
t∈Tj

t · xjt ≥
∑

t∈Ti

t · xit + δij (〈i, j〉 ∈ E)∑
i∈V

rd
ik

∑
v∈Πk

∑
τ∈Qi,(v−1)∩Ti

xiτ ≤ Rk (k ∈ R)

xit ∈ {0, 1} (i ∈ V, t ∈ Ti)

261

The MILP is a time-indexed formulation with binary variables xit for each activity
i ∈ V and each start time point t of the activity in the set Ti := {ESi, ESi + 1, . . . , LSi}.
The binary variable xit takes the value 1 exactly if activity i starts at time point t, i.e.,
t = Si. The set Qit contains all time points activity i could be started so that activity i

would be in execution at time point t, i.e., Qit := {t − pi + 1, . . . , t}.

Table 1. Results of the computational study

UBO10π UBO20π UBO50π UBO100π UBO200π

BnB CPLEX BnB CPLEX BnB CPLEX BnB CPLEX BnB CPLEX

#opt 511 565 288 391 116 113 58 34 53 5

#feas 55 1 259 160 352 65 333 6 312 1

#infeas 129 132 30 57 0 19 0 3 0 0

#noSol 3 0 34 3 59 330 93 441 101 460

#trivial 31 31 118 118 202 202 245 245 263 263

∅CPU
opt 1.60 0.56 2.51 6.78 1.72 4.89 1.76 15.41 6.21 40.51

∅CPU
infeas 0.44 0.03 2.31 0.45 – 2.44 – 14.90 – –

The results of the computational study are given in Tab. 1 where for each test set,
for instance UBO10π with 10 activities, the results of the BnB procedure and the IBM

CPLEX solver (CPLEX) are listed. The term #opt stands for the number of optimal solved
instances for which the schedule ES is not optimal, term #feas describes the number of
instances the solution procedure was able to find a solution which could not be proofed
to be optimal and #infeas gives the number of instances the procedure could proof the
infeasibility for. In the following two rows, the number of instances the solution procedure
was not able to find any feasible solution (#noSol) and the number of so called trivial
instances for which the schedule ES is already optimal (#trivial) are given. Finally, the
last rows show the average used CPU time in seconds over all optimal solved (∅CPU

opt) and
over all instances for which the infeasibility could be proofed (∅CPU

infeas).
In Tab. 1 it can be seen that the IBM CPLEX solver dominates the developed BnB

procedure for the instance sets UBO10π and UBO20π. In contrast, the BnB procedure is
able to obtain optimal and feasible solutions for more instances of the test sets UBO50π,
UBO100π and UBO200π.

References

Álvarez-Valdés R., E. Crespo, J.M. Tamarit and F. Villa, 2006, “A scatter search algorithm for
project scheduling under partially renewable resources”, Journal of Heuristics, Vol. 12, pp. 95-
113.

Álvarez-Valdés R., E. Crespo, J.M. Tamarit and F. Villa, 2008, “GRASP and path relinking
for project scheduling under partially renewable resources”, European Journal of Operational

Research, Vol. 189, pp. 1153-1170.
Böttcher J., A. Drexl, R. Kolisch, F. Salewski, 1996, “Project scheduling under partially renewable

resource constraints”, Technical Report, Manuskripte aus den Instituten für Betriebswirt-

schaftslehre 398, University of Kiel.
Böttcher J., A. Drexl, R. Kolisch and F. Salewski, 1999, “Project scheduling under partially

renewable resource constraints”, Management Science, Vol. 45, pp. 544-559.
Schirmer A., 1999, “Project scheduling with scarce resources: models, methods and applications”,

Dr. Kovač, Hamburg.
Schwindt C., “Generation of resource-constrained project scheduling problems subject to temporal

constraints”, Technical Report WIOR-543, University of Karlsruhe.

262

	Copertina_plus.pdf
	Copertina.pdf
	blank_page.pdf

	Frontmatter.pdf
	ISBN.pdf
	preface.pdf
	preface_back.pdf
	pc.pdf
	pc_back.pdf
	toc.pdf
	toc_back.pdf
	author_index.pdf
	keyword_index.pdf
	keyword_index_back.pdf

	Proceedings2di2.pdf
	Binder1_01_05.pdf
	01_paper_65.pdf
	02_paper_64.pdf
	03_paper_70.pdf
	04_paper_29.pdf
	05_paper_37.pdf

	Binder1_06_10.pdf
	06_paper_59.pdf
	07_paper_47.pdf
	08_paper_46.pdf
	09_paper_49.pdf
	10_paper_22.pdf

	Binder1_11_15.pdf
	11_paper_71.pdf
	12_paper_43.pdf
	13_paper_8.pdf
	14_paper_52.pdf
	15_paper_14.pdf

	Binder1_16_20.pdf
	16_paper_12.pdf
	17_paper_1.pdf
	Synchronous flow shop scheduling with pliable jobs
	Matthias Bultmann, Sigrid Knust , Stefan Waldherr

	18_paper_28.pdf
	19_invited_paper_3.pdf
	20_paper_7.pdf

	Binder1_21_25.pdf
	21_paper_45.pdf
	22_paper_54.pdf
	23_paper_74.pdf
	24_paper_56.pdf
	25_paper_24.pdf
	A new set of benchmark instances for the Multi-Mode Resource Investment Problem
	 Patrick Gerhards

	Binder1_26_30.pdf
	26_paper_41.pdf
	27_paper_33.pdf
	28_paper_13.pdf
	29_paper_61.pdf
	30_paper_39.pdf

	Binder1_31_35.pdf
	31_paper_36.pdf
	Scheduling Multiple Flexible Projects with Different Variants of Genetic Algorithms
	Luise-Sophie Hoffmann and Carolin Kellenbrink

	32_paper_55.pdf
	33_paper_30.pdf
	34_paper_32.pdf
	35_paper_31.pdf

	Binder1_36_40.pdf
	36_paper_66.pdf
	37_paper_35.pdf
	38_paper_11.pdf
	39_paper_10.pdf
	40_paper_40.pdf

	Binder1_41_45.pdf
	41_paper_27.pdf
	42_invited_paper_2.pdf
	43_paper_18.pdf
	44_paper_58.pdf
	45_paper_73.pdf

	Binder1_46_50.pdf
	46_paper_76.pdf
	47_invited_paper_1.pdf
	48_paper_42.pdf
	49_paper_53.pdf
	50_paper_21.pdf

	Binder1_51_67.pdf
	51_paper_25.pdf
	On the complexity of scheduling start time dependent asymmetric convex processing times
	Helmut A. Sedding

	52_paper_19.pdf
	53_paper_23.pdf
	54_paper_44.pdf
	55_paper_15.pdf
	56_paper_9.pdf
	57_paper_34.pdf
	Order Acceptance and Scheduling Problem with Batch Delivery
	 Istenç Tarhan and Ceyda Oguz

	58_paper_72.pdf
	59_paper_69.pdf
	60_paper_17.pdf
	61_paper_4.pdf
	62_paper_16.pdf
	63_paper_5.pdf
	64_paper_62.pdf
	65_paper_6.pdf
	66_paper_3.pdf
	Multi-Level Tabu Search for Job Scheduling in a Variable-Resource Environment
	Nicolas Zufferey

	67_paper_38.pdf

