Input format RCPSP/max- π | n | ρ | 0 | 0 | | | | | | |---------------|-----------|----------------------------|-------------|---|----------------|----------------------|-------|--------------------------| | 0 | 1 | s_0 | j_1^0 | • • • | $j_{s_0}^0$ | $[\delta_{0,j_1^0}]$ | | $[\delta_{0,j^0_{s_0}}]$ | | 1 | 1 | s_1 | j_1^1 | | $j_{s_1}^1$ | $[\delta_{1,j_1^1}]$ | | $[\delta_{1,j^1_{s_1}}]$ | | | | | | | | | | | | $\mid n \mid$ | 1 | s_n | j_1^n | • • • | $j_{s_n}^n$ | $[\delta_{n,j_1^n}]$ | • • • | $[\delta_{n,j^n_{s_n}}]$ | | n+1 | 1 | s_{n+1} | | | | | | | | 0 | 1 | p_0 | r_{01} | • • • | $r_{0 ho}$ | | | | | 1 | 1 | p_1 | r_{11} | • • • | $r_{1\rho}$ | | | | | ••• | | | | | | | | | | $\mid n \mid$ | 1 | p_n | r_{n1} | • • • | $r_{n\rho}$ | | | | | n+1 | 1 | p_{n+1} | $r_{n+1,1}$ | | $r_{n+1,\rho}$ | | | | | R_1 | • • • | $R_{ ho}$ | | | | | | | | 1 | I_1 | $[\mu_1^1,\sigma_1^1]$ | • • • | $[\mu^{1}_{I_{1}},\sigma^{1}_{I_{1}}]$ | | | | | | 2 | I_2 | $[\mu_1^2,\sigma_1^2]$ | • • • | $ \begin{bmatrix} \mu_{I_1}^1, \sigma_{I_1}^1 \\ [\mu_{I_2}^2, \sigma_{I_2}^2] \end{bmatrix} $ | | | | | | ••• | | | | | | | | | | ρ | $I_{ ho}$ | $[\mu_1^ ho,\sigma_1^ ho]$ | • • • | $[\mu_{I_ ho}^ ho,\sigma_{I_ ho}^ ho]$ | | | | | ## Symbols | Symbol | Denotes | |--|--| | \overline{n} | Number of real activities | | ρ | Number of partially renewable resources | | s_i | Number of direct successors of node i in project network | | $j_s^i \ \delta_{i,j_s^i}$ | s-th successor of node i in project network | | δ_{i,j_s^i} | Weight of arc (i, j_s^i) | | p_i | Duration of activity i | | r_{ik} | Demand of resource k by activity i per period | | R_k | Capacity of resource k | | Π_k | Set of periods resource k is available $(\Pi_k = \bigcup_{l=1}^{I_k} [\mu_l^k + 1, \sigma_l^k] \cap \mathbb{Z})$ | | I_k | Number of components in Π_k | | $egin{aligned} \mu_l^k \ \sigma_l^k \end{aligned}$ | Start time of the first period in the l -th component of Π_k | | σ_l^k | End time of the last period in the l -th component of Π_k |